GGC 和 GCC 的二元组形成热点聚落,与人类和其他类人猿的进化相吻合。

IF 1.9 Q3 GENETICS & HEREDITY BMC genomic data Pub Date : 2024-02-21 DOI:10.1186/s12863-024-01207-z
M Arabfard, N Tajeddin, S Alizadeh, M Salesi, H Bayat, H R Khorram Khorshid, S Khamse, A Delbari, M Ohadi
{"title":"GGC 和 GCC 的二元组形成热点聚落,与人类和其他类人猿的进化相吻合。","authors":"M Arabfard, N Tajeddin, S Alizadeh, M Salesi, H Bayat, H R Khorram Khorshid, S Khamse, A Delbari, M Ohadi","doi":"10.1186/s12863-024-01207-z","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>GGC and GCC short tandem repeats (STRs) are of various evolutionary, biological, and pathological implications. However, the fundamental two-repeats (dyads) of these STRs are widely unexplored.</p><p><strong>Results: </strong>On a genome-wide scale, we mapped (GGC)2 and (GCC)2 dyads in human, and found monumental colonies (distance between each dyad < 500 bp) of extraordinary density, and in some instances periodicity. The largest (GCC)2 and (GGC)2 colonies were intergenic, homogeneous, and human-specific, consisting of 219 (GCC)2 on chromosome 2 (probability < 1.545E-219) and 70 (GGC)2 on chromosome 9 (probability = 1.809E-148). We also found that several colonies were shared in other great apes, and directionally increased in density and complexity in human, such as a colony of 99 (GCC)2 on chromosome 20, that specifically expanded in great apes, and reached maximum complexity in human (probability 1.545E-220). Numerous other colonies of evolutionary relevance in human were detected in other largely overlooked regions of the genome, such as chromosome Y and pseudogenes. Several of the genes containing or nearest to those colonies were divergently expressed in human.</p><p><strong>Conclusion: </strong>In conclusion, (GCC)2 and (GGC)2 form unprecedented genomic colonies that coincide with the evolution of human and other great apes. The extent of the genomic rearrangements leading to those colonies support overlooked recombination hotspots, shared across great apes. The identified colonies deserve to be studied in mechanistic, evolutionary, and functional platforms.</p>","PeriodicalId":72427,"journal":{"name":"BMC genomic data","volume":"25 1","pages":"21"},"PeriodicalIF":1.9000,"publicationDate":"2024-02-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10880355/pdf/","citationCount":"0","resultStr":"{\"title\":\"Dyads of GGC and GCC form hotspot colonies that coincide with the evolution of human and other great apes.\",\"authors\":\"M Arabfard, N Tajeddin, S Alizadeh, M Salesi, H Bayat, H R Khorram Khorshid, S Khamse, A Delbari, M Ohadi\",\"doi\":\"10.1186/s12863-024-01207-z\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>GGC and GCC short tandem repeats (STRs) are of various evolutionary, biological, and pathological implications. However, the fundamental two-repeats (dyads) of these STRs are widely unexplored.</p><p><strong>Results: </strong>On a genome-wide scale, we mapped (GGC)2 and (GCC)2 dyads in human, and found monumental colonies (distance between each dyad < 500 bp) of extraordinary density, and in some instances periodicity. The largest (GCC)2 and (GGC)2 colonies were intergenic, homogeneous, and human-specific, consisting of 219 (GCC)2 on chromosome 2 (probability < 1.545E-219) and 70 (GGC)2 on chromosome 9 (probability = 1.809E-148). We also found that several colonies were shared in other great apes, and directionally increased in density and complexity in human, such as a colony of 99 (GCC)2 on chromosome 20, that specifically expanded in great apes, and reached maximum complexity in human (probability 1.545E-220). Numerous other colonies of evolutionary relevance in human were detected in other largely overlooked regions of the genome, such as chromosome Y and pseudogenes. Several of the genes containing or nearest to those colonies were divergently expressed in human.</p><p><strong>Conclusion: </strong>In conclusion, (GCC)2 and (GGC)2 form unprecedented genomic colonies that coincide with the evolution of human and other great apes. The extent of the genomic rearrangements leading to those colonies support overlooked recombination hotspots, shared across great apes. The identified colonies deserve to be studied in mechanistic, evolutionary, and functional platforms.</p>\",\"PeriodicalId\":72427,\"journal\":{\"name\":\"BMC genomic data\",\"volume\":\"25 1\",\"pages\":\"21\"},\"PeriodicalIF\":1.9000,\"publicationDate\":\"2024-02-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10880355/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"BMC genomic data\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1186/s12863-024-01207-z\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"GENETICS & HEREDITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"BMC genomic data","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1186/s12863-024-01207-z","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"GENETICS & HEREDITY","Score":null,"Total":0}
引用次数: 0

摘要

背景:GGC和GCC短串联重复序列(STR)在进化、生物学和病理学方面具有各种意义。然而,这些 STR 的基本双重复序列(dyads)尚未得到广泛研究:结果:在全基因组范围内,我们绘制了人类的(GGC)2和(GCC)2双重复序列,并发现了巨大的群落(每个双重复序列之间的距离):总之,(GCC)2 和 (GGC)2 形成了前所未有的基因组群落,与人类和其他类人猿的进化过程相吻合。导致这些聚落的基因组重排的程度支持了被忽视的重组热点,这些热点在类人猿中是共享的。这些已确定的基因群值得在机理、进化和功能平台上进行研究。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Dyads of GGC and GCC form hotspot colonies that coincide with the evolution of human and other great apes.

Background: GGC and GCC short tandem repeats (STRs) are of various evolutionary, biological, and pathological implications. However, the fundamental two-repeats (dyads) of these STRs are widely unexplored.

Results: On a genome-wide scale, we mapped (GGC)2 and (GCC)2 dyads in human, and found monumental colonies (distance between each dyad < 500 bp) of extraordinary density, and in some instances periodicity. The largest (GCC)2 and (GGC)2 colonies were intergenic, homogeneous, and human-specific, consisting of 219 (GCC)2 on chromosome 2 (probability < 1.545E-219) and 70 (GGC)2 on chromosome 9 (probability = 1.809E-148). We also found that several colonies were shared in other great apes, and directionally increased in density and complexity in human, such as a colony of 99 (GCC)2 on chromosome 20, that specifically expanded in great apes, and reached maximum complexity in human (probability 1.545E-220). Numerous other colonies of evolutionary relevance in human were detected in other largely overlooked regions of the genome, such as chromosome Y and pseudogenes. Several of the genes containing or nearest to those colonies were divergently expressed in human.

Conclusion: In conclusion, (GCC)2 and (GGC)2 form unprecedented genomic colonies that coincide with the evolution of human and other great apes. The extent of the genomic rearrangements leading to those colonies support overlooked recombination hotspots, shared across great apes. The identified colonies deserve to be studied in mechanistic, evolutionary, and functional platforms.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
4.90
自引率
0.00%
发文量
0
期刊最新文献
The amniote-conserved DNA-binding domain of CGGBP1 restricts cytosine methylation of transcription factor binding sites in proximal promoters to regulate gene expression. Comprehensive analysis of the genetic variation dataset among wild soybean (Glycine soja) in Shandong Province, China. Chromosome-scale assembly of apple mint (Mentha suaveolens). A highly contiguous genome sequence of Alternaria porri isolate Apn-Nashik causing purple blotch disease in onion. Complete genome of single locus sequence typing D1 strain Cutibacterium acnes CN6 isolated from healthy facial skin.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1