氮掺杂石墨烯包覆的混合氧化铁纳米粒子对 HepG2 的选择性细胞毒性作用是一种新的潜在治疗方法。

0 MATERIALS SCIENCE, MULTIDISCIPLINARY Discover nano Pub Date : 2024-02-22 DOI:10.1186/s11671-024-03977-y
Zeynep Demir, Berkay Sungur, Edip Bayram, Aysun Özkan
{"title":"氮掺杂石墨烯包覆的混合氧化铁纳米粒子对 HepG2 的选择性细胞毒性作用是一种新的潜在治疗方法。","authors":"Zeynep Demir, Berkay Sungur, Edip Bayram, Aysun Özkan","doi":"10.1186/s11671-024-03977-y","DOIUrl":null,"url":null,"abstract":"<p><p>New selective therapeutics are needed for the treatment of hepatocellular carcinoma (HCC), the 7th most common cancer. In this study, we compared the cytotoxic effect induced by the release of pH-dependent iron nanoparticles from nitrogen-doped graphene-coated mixed iron oxide nanoparticles (Fe<sub>x</sub>O<sub>y</sub>/N-GN) with the cytotoxic effect of nitrogen-doped graphene (N-GN) and commercial graphene nanoflakes (GN) in Hepatoma G2 (HepG2) cells and healthy cells. The cytotoxic effect of nanocomposites (2.5-100 ug/ml) on HepG2 and healthy fibroblast (BJ) cells (12-48 h) was measured by Cell Viability assay, and the half maximal inhibitory concentration (IC<sub>50</sub>) was calculated. After the shortest (12 h) and longest incubation (48 h) incubation periods in HepG2 cells, IC<sub>50</sub> values of Fe<sub>x</sub>O<sub>y</sub>/N-GN were calculated as 21.95 to 2.11 µg.mL<sup>-1</sup>, IC<sub>50</sub> values of N-GN were calculated as 39.64 to 26.47 µg.mL<sup>-1</sup> and IC<sub>50</sub> values of GN were calculated as 49.94 to 29.94, respectively. After 48 h, Fe<sub>x</sub>O<sub>y</sub>/N-GN showed a selectivity index (SI) of 10.80 for HepG2/BJ cells, exceeding the SI of N-GN (1.27) by about 8.5-fold. The high cytotoxicity of FexOy/N-GN was caused by the fact that liver cancer cells have many transferrin receptors and time-dependent pH changes in their microenvironment increase iron release. This indicates the potential of Fe<sub>x</sub>O<sub>y</sub>/N-GN as a new selective therapeutic.</p>","PeriodicalId":72828,"journal":{"name":"Discover nano","volume":"19 1","pages":"33"},"PeriodicalIF":0.0000,"publicationDate":"2024-02-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10884380/pdf/","citationCount":"0","resultStr":"{\"title\":\"Selective cytotoxic effects of nitrogen-doped graphene coated mixed iron oxide nanoparticles on HepG2 as a new potential therapeutic approach.\",\"authors\":\"Zeynep Demir, Berkay Sungur, Edip Bayram, Aysun Özkan\",\"doi\":\"10.1186/s11671-024-03977-y\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>New selective therapeutics are needed for the treatment of hepatocellular carcinoma (HCC), the 7th most common cancer. In this study, we compared the cytotoxic effect induced by the release of pH-dependent iron nanoparticles from nitrogen-doped graphene-coated mixed iron oxide nanoparticles (Fe<sub>x</sub>O<sub>y</sub>/N-GN) with the cytotoxic effect of nitrogen-doped graphene (N-GN) and commercial graphene nanoflakes (GN) in Hepatoma G2 (HepG2) cells and healthy cells. The cytotoxic effect of nanocomposites (2.5-100 ug/ml) on HepG2 and healthy fibroblast (BJ) cells (12-48 h) was measured by Cell Viability assay, and the half maximal inhibitory concentration (IC<sub>50</sub>) was calculated. After the shortest (12 h) and longest incubation (48 h) incubation periods in HepG2 cells, IC<sub>50</sub> values of Fe<sub>x</sub>O<sub>y</sub>/N-GN were calculated as 21.95 to 2.11 µg.mL<sup>-1</sup>, IC<sub>50</sub> values of N-GN were calculated as 39.64 to 26.47 µg.mL<sup>-1</sup> and IC<sub>50</sub> values of GN were calculated as 49.94 to 29.94, respectively. After 48 h, Fe<sub>x</sub>O<sub>y</sub>/N-GN showed a selectivity index (SI) of 10.80 for HepG2/BJ cells, exceeding the SI of N-GN (1.27) by about 8.5-fold. The high cytotoxicity of FexOy/N-GN was caused by the fact that liver cancer cells have many transferrin receptors and time-dependent pH changes in their microenvironment increase iron release. This indicates the potential of Fe<sub>x</sub>O<sub>y</sub>/N-GN as a new selective therapeutic.</p>\",\"PeriodicalId\":72828,\"journal\":{\"name\":\"Discover nano\",\"volume\":\"19 1\",\"pages\":\"33\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-02-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10884380/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Discover nano\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1186/s11671-024-03977-y\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"0\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Discover nano","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1186/s11671-024-03977-y","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"0","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

肝细胞癌是第七大常见癌症,治疗肝细胞癌需要新的选择性疗法。在这项研究中,我们比较了氮掺杂石墨烯包覆的混合氧化铁纳米颗粒(FexOy/N-GN)与氮掺杂石墨烯(N-GN)和商用石墨烯纳米片(GN)对肝癌 G2(HepG2)细胞和健康细胞的细胞毒性作用,后者释放的铁纳米颗粒随 pH 值变化。纳米复合材料(2.5-100 ug/ml)对 HepG2 细胞和健康成纤维细胞(BJ)的细胞毒性作用(12-48 h)是通过细胞活力测定法测定的,并计算了半数最大抑制浓度(IC50)。在 HepG2 细胞中经过最短(12 小时)和最长(48 小时)的培养后,FexOy/N-GN 的 IC50 值分别为 21.95 至 2.11 µg.mL-1,N-GN 的 IC50 值为 39.64 至 26.47 µg.mL-1,GN 的 IC50 值为 49.94 至 29.94。48 小时后,FexOy/N-GN 对 HepG2/BJ 细胞的选择性指数(SI)为 10.80,比 N-GN 的选择性指数(1.27)高出约 8.5 倍。FexOy/N-GN的高细胞毒性是由于肝癌细胞有许多转铁蛋白受体,其微环境中随时间变化的pH值会增加铁的释放。这表明,FexOy/N-GN 有可能成为一种新的选择性疗法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Selective cytotoxic effects of nitrogen-doped graphene coated mixed iron oxide nanoparticles on HepG2 as a new potential therapeutic approach.

New selective therapeutics are needed for the treatment of hepatocellular carcinoma (HCC), the 7th most common cancer. In this study, we compared the cytotoxic effect induced by the release of pH-dependent iron nanoparticles from nitrogen-doped graphene-coated mixed iron oxide nanoparticles (FexOy/N-GN) with the cytotoxic effect of nitrogen-doped graphene (N-GN) and commercial graphene nanoflakes (GN) in Hepatoma G2 (HepG2) cells and healthy cells. The cytotoxic effect of nanocomposites (2.5-100 ug/ml) on HepG2 and healthy fibroblast (BJ) cells (12-48 h) was measured by Cell Viability assay, and the half maximal inhibitory concentration (IC50) was calculated. After the shortest (12 h) and longest incubation (48 h) incubation periods in HepG2 cells, IC50 values of FexOy/N-GN were calculated as 21.95 to 2.11 µg.mL-1, IC50 values of N-GN were calculated as 39.64 to 26.47 µg.mL-1 and IC50 values of GN were calculated as 49.94 to 29.94, respectively. After 48 h, FexOy/N-GN showed a selectivity index (SI) of 10.80 for HepG2/BJ cells, exceeding the SI of N-GN (1.27) by about 8.5-fold. The high cytotoxicity of FexOy/N-GN was caused by the fact that liver cancer cells have many transferrin receptors and time-dependent pH changes in their microenvironment increase iron release. This indicates the potential of FexOy/N-GN as a new selective therapeutic.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
0.70
自引率
0.00%
发文量
0
期刊最新文献
A novel transdermal drug delivery system: drug-loaded ROS-responsive ferrocene fibers for effective photoprotective and wound healing activity. Exploitation of functionalized green nanomaterials for plant disease management. Antimicrobial efficacy of nano-particles for crop protection and sustainable agriculture. Effect of annealing temperature on the optoelectrical synapse behaviors of A-ZnO microtube. Anticandidal applications of selenium nanoparticles biosynthesized with Limosilactobacillus fermentum (OR553490).
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1