{"title":"促进皮瓣存活的微环境重塑自愈合水凝胶","authors":"Yikun Ju, Pu Yang, Xiangjun Liu, Zhihua Qiao, Naisi Shen, Lanjie Lei, Bairong Fang","doi":"10.34133/bmr.0001","DOIUrl":null,"url":null,"abstract":"<p><p>Random flap grafting is a routine procedure used in plastic and reconstructive surgery to repair and reconstruct large tissue defects. Flap necrosis is primarily caused by ischemia-reperfusion injury and inadequate blood supply to the distal flap. Ischemia-reperfusion injury leads to the production of excessive reactive oxygen species, creating a pathological microenvironment that impairs cellular function and angiogenesis. In this study, we developed a microenvironment remodeling self-healing hydrogel [laminarin-chitosan-based hydrogel-loaded extracellular vesicles and ceria nanozymes (LCH@EVs&CNZs)] to improve the flap microenvironment and synergistically promote flap regeneration and survival. The natural self-healing hydrogel (LCH) was created by the oxidation laminarin and carboxymethylated chitosan via a Schiff base reaction. We loaded this hydrogel with CNZs and EVs. CNZs are a class of nanomaterials with enzymatic activity known for their strong scavenging capacity for reactive oxygen species, thus alleviating oxidative stress. EVs are cell-secreted vesicular structures containing thousands of bioactive substances that can promote cell proliferation, migration, differentiation, and angiogenesis. The constructed LCH@EVs&CNZs demonstrated a robust capacity for scavenging excess reactive oxygen species, thereby conferring cellular protection in oxidative stress environments. Moreover, these constructs notably enhance cell migration and angiogenesis. Our results demonstrate that LCH@EVs&CNZs effectively remodel the pathological skin flap microenvironment and marked improve flap survival. This approach introduces a new therapeutic strategy combining microenvironmental remodeling with EV therapy, which holds promise for promoting flap survival.</p>","PeriodicalId":93902,"journal":{"name":"Biomaterials research","volume":"28 ","pages":"0001"},"PeriodicalIF":8.1000,"publicationDate":"2024-02-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10882600/pdf/","citationCount":"0","resultStr":"{\"title\":\"Microenvironment Remodeling Self-Healing Hydrogel for Promoting Flap Survival.\",\"authors\":\"Yikun Ju, Pu Yang, Xiangjun Liu, Zhihua Qiao, Naisi Shen, Lanjie Lei, Bairong Fang\",\"doi\":\"10.34133/bmr.0001\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Random flap grafting is a routine procedure used in plastic and reconstructive surgery to repair and reconstruct large tissue defects. Flap necrosis is primarily caused by ischemia-reperfusion injury and inadequate blood supply to the distal flap. Ischemia-reperfusion injury leads to the production of excessive reactive oxygen species, creating a pathological microenvironment that impairs cellular function and angiogenesis. In this study, we developed a microenvironment remodeling self-healing hydrogel [laminarin-chitosan-based hydrogel-loaded extracellular vesicles and ceria nanozymes (LCH@EVs&CNZs)] to improve the flap microenvironment and synergistically promote flap regeneration and survival. The natural self-healing hydrogel (LCH) was created by the oxidation laminarin and carboxymethylated chitosan via a Schiff base reaction. We loaded this hydrogel with CNZs and EVs. CNZs are a class of nanomaterials with enzymatic activity known for their strong scavenging capacity for reactive oxygen species, thus alleviating oxidative stress. EVs are cell-secreted vesicular structures containing thousands of bioactive substances that can promote cell proliferation, migration, differentiation, and angiogenesis. The constructed LCH@EVs&CNZs demonstrated a robust capacity for scavenging excess reactive oxygen species, thereby conferring cellular protection in oxidative stress environments. Moreover, these constructs notably enhance cell migration and angiogenesis. Our results demonstrate that LCH@EVs&CNZs effectively remodel the pathological skin flap microenvironment and marked improve flap survival. This approach introduces a new therapeutic strategy combining microenvironmental remodeling with EV therapy, which holds promise for promoting flap survival.</p>\",\"PeriodicalId\":93902,\"journal\":{\"name\":\"Biomaterials research\",\"volume\":\"28 \",\"pages\":\"0001\"},\"PeriodicalIF\":8.1000,\"publicationDate\":\"2024-02-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10882600/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biomaterials research\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.34133/bmr.0001\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/1/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, BIOMEDICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomaterials research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.34133/bmr.0001","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
Microenvironment Remodeling Self-Healing Hydrogel for Promoting Flap Survival.
Random flap grafting is a routine procedure used in plastic and reconstructive surgery to repair and reconstruct large tissue defects. Flap necrosis is primarily caused by ischemia-reperfusion injury and inadequate blood supply to the distal flap. Ischemia-reperfusion injury leads to the production of excessive reactive oxygen species, creating a pathological microenvironment that impairs cellular function and angiogenesis. In this study, we developed a microenvironment remodeling self-healing hydrogel [laminarin-chitosan-based hydrogel-loaded extracellular vesicles and ceria nanozymes (LCH@EVs&CNZs)] to improve the flap microenvironment and synergistically promote flap regeneration and survival. The natural self-healing hydrogel (LCH) was created by the oxidation laminarin and carboxymethylated chitosan via a Schiff base reaction. We loaded this hydrogel with CNZs and EVs. CNZs are a class of nanomaterials with enzymatic activity known for their strong scavenging capacity for reactive oxygen species, thus alleviating oxidative stress. EVs are cell-secreted vesicular structures containing thousands of bioactive substances that can promote cell proliferation, migration, differentiation, and angiogenesis. The constructed LCH@EVs&CNZs demonstrated a robust capacity for scavenging excess reactive oxygen species, thereby conferring cellular protection in oxidative stress environments. Moreover, these constructs notably enhance cell migration and angiogenesis. Our results demonstrate that LCH@EVs&CNZs effectively remodel the pathological skin flap microenvironment and marked improve flap survival. This approach introduces a new therapeutic strategy combining microenvironmental remodeling with EV therapy, which holds promise for promoting flap survival.