{"title":"快速实现怪物群","authors":"Martin Seysen","doi":"10.1016/j.jaca.2024.100012","DOIUrl":null,"url":null,"abstract":"<div><p>Let <span><math><mi>M</mi></math></span> be the Monster group, which is the largest sporadic finite simple group, and has first been constructed in 1982 by Griess. In 1985 Conway has constructed a 196884-dimensional rational representation <em>ρ</em> of <span><math><mi>M</mi></math></span> with matrix entries in <span><math><mi>Z</mi><mo>[</mo><mfrac><mrow><mn>1</mn></mrow><mrow><mn>2</mn></mrow></mfrac><mo>]</mo></math></span>. We describe a new and very fast algorithm for performing the group operation in <span><math><mi>M</mi></math></span>.</p><p>For an odd integer <span><math><mi>p</mi><mo>></mo><mn>1</mn></math></span> let <span><math><msub><mrow><mi>ρ</mi></mrow><mrow><mi>p</mi></mrow></msub></math></span> be the representation <em>ρ</em> with matrix entries taken modulo <em>p</em>. We use a generating set Γ of <span><math><mi>M</mi></math></span>, such that the operation of a generator in Γ on an element of <span><math><msub><mrow><mi>ρ</mi></mrow><mrow><mi>p</mi></mrow></msub></math></span> can easily be computed.</p><p>We construct a triple <span><math><mo>(</mo><msub><mrow><mi>v</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><msup><mrow><mi>v</mi></mrow><mrow><mo>+</mo></mrow></msup><mo>,</mo><msup><mrow><mi>v</mi></mrow><mrow><mo>−</mo></mrow></msup><mo>)</mo></math></span> of elements of the module <span><math><msub><mrow><mi>ρ</mi></mrow><mrow><mn>15</mn></mrow></msub></math></span>, such that an unknown <span><math><mi>g</mi><mo>∈</mo><mi>M</mi></math></span> can be effectively computed as a word in Γ from the images <span><math><mo>(</mo><msub><mrow><mi>v</mi></mrow><mrow><mn>1</mn></mrow></msub><mi>g</mi><mo>,</mo><msup><mrow><mi>v</mi></mrow><mrow><mo>+</mo></mrow></msup><mi>g</mi><mo>,</mo><msup><mrow><mi>v</mi></mrow><mrow><mo>−</mo></mrow></msup><mi>g</mi><mo>)</mo></math></span>.</p><p>Our new algorithm based on this idea multiplies two random elements of <span><math><mi>M</mi></math></span> in less than 30 milliseconds on a standard PC with an Intel i7-8750H CPU at 4 GHz. This is more than 100000 times faster than estimated by Wilson in 2013.</p></div>","PeriodicalId":100767,"journal":{"name":"Journal of Computational Algebra","volume":"9 ","pages":"Article 100012"},"PeriodicalIF":0.0000,"publicationDate":"2024-02-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2772827724000020/pdfft?md5=6274b39ef3a5da0cdf30796d2fbfed44&pid=1-s2.0-S2772827724000020-main.pdf","citationCount":"0","resultStr":"{\"title\":\"A fast implementation of the Monster group\",\"authors\":\"Martin Seysen\",\"doi\":\"10.1016/j.jaca.2024.100012\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Let <span><math><mi>M</mi></math></span> be the Monster group, which is the largest sporadic finite simple group, and has first been constructed in 1982 by Griess. In 1985 Conway has constructed a 196884-dimensional rational representation <em>ρ</em> of <span><math><mi>M</mi></math></span> with matrix entries in <span><math><mi>Z</mi><mo>[</mo><mfrac><mrow><mn>1</mn></mrow><mrow><mn>2</mn></mrow></mfrac><mo>]</mo></math></span>. We describe a new and very fast algorithm for performing the group operation in <span><math><mi>M</mi></math></span>.</p><p>For an odd integer <span><math><mi>p</mi><mo>></mo><mn>1</mn></math></span> let <span><math><msub><mrow><mi>ρ</mi></mrow><mrow><mi>p</mi></mrow></msub></math></span> be the representation <em>ρ</em> with matrix entries taken modulo <em>p</em>. We use a generating set Γ of <span><math><mi>M</mi></math></span>, such that the operation of a generator in Γ on an element of <span><math><msub><mrow><mi>ρ</mi></mrow><mrow><mi>p</mi></mrow></msub></math></span> can easily be computed.</p><p>We construct a triple <span><math><mo>(</mo><msub><mrow><mi>v</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><msup><mrow><mi>v</mi></mrow><mrow><mo>+</mo></mrow></msup><mo>,</mo><msup><mrow><mi>v</mi></mrow><mrow><mo>−</mo></mrow></msup><mo>)</mo></math></span> of elements of the module <span><math><msub><mrow><mi>ρ</mi></mrow><mrow><mn>15</mn></mrow></msub></math></span>, such that an unknown <span><math><mi>g</mi><mo>∈</mo><mi>M</mi></math></span> can be effectively computed as a word in Γ from the images <span><math><mo>(</mo><msub><mrow><mi>v</mi></mrow><mrow><mn>1</mn></mrow></msub><mi>g</mi><mo>,</mo><msup><mrow><mi>v</mi></mrow><mrow><mo>+</mo></mrow></msup><mi>g</mi><mo>,</mo><msup><mrow><mi>v</mi></mrow><mrow><mo>−</mo></mrow></msup><mi>g</mi><mo>)</mo></math></span>.</p><p>Our new algorithm based on this idea multiplies two random elements of <span><math><mi>M</mi></math></span> in less than 30 milliseconds on a standard PC with an Intel i7-8750H CPU at 4 GHz. This is more than 100000 times faster than estimated by Wilson in 2013.</p></div>\",\"PeriodicalId\":100767,\"journal\":{\"name\":\"Journal of Computational Algebra\",\"volume\":\"9 \",\"pages\":\"Article 100012\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-02-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S2772827724000020/pdfft?md5=6274b39ef3a5da0cdf30796d2fbfed44&pid=1-s2.0-S2772827724000020-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Computational Algebra\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2772827724000020\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Computational Algebra","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2772827724000020","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
摘要
让 M 成为怪兽群,它是最大的零星有限单群,1982 年由 Griess 首次构造。1985 年,Conway 构建了 M 的 196884 维有理表示 ρ,其矩阵项为 Z[12]。对于奇整数 p>1,让 ρp 表示矩阵项取模 p 的表示 ρ。我们使用 M 的生成集 Γ,这样 Γ 中的生成器对 ρp 元素的运算就可以很容易地计算出来。我们为模块 ρ15 的元素构建了一个三元组 (v1,v+,v-),这样一个未知的 g∈M 就可以有效地通过图像 (v1g,v+g,v-g) 计算出 Γ 中的一个字。这比威尔逊在 2013 年估计的速度快 10 万倍以上。
Let be the Monster group, which is the largest sporadic finite simple group, and has first been constructed in 1982 by Griess. In 1985 Conway has constructed a 196884-dimensional rational representation ρ of with matrix entries in . We describe a new and very fast algorithm for performing the group operation in .
For an odd integer let be the representation ρ with matrix entries taken modulo p. We use a generating set Γ of , such that the operation of a generator in Γ on an element of can easily be computed.
We construct a triple of elements of the module , such that an unknown can be effectively computed as a word in Γ from the images .
Our new algorithm based on this idea multiplies two random elements of in less than 30 milliseconds on a standard PC with an Intel i7-8750H CPU at 4 GHz. This is more than 100000 times faster than estimated by Wilson in 2013.