通过自动电催化平台快速筛选铜基双金属催化剂:在铕改性铜上电催化还原 CO2 至 C2+ 产物

Yan Shen, Zihan Wang, Yihan Wang, Cheng Wang
{"title":"通过自动电催化平台快速筛选铜基双金属催化剂:在铕改性铜上电催化还原 CO2 至 C2+ 产物","authors":"Yan Shen,&nbsp;Zihan Wang,&nbsp;Yihan Wang,&nbsp;Cheng Wang","doi":"10.1016/j.aichem.2024.100056","DOIUrl":null,"url":null,"abstract":"<div><p>The electrocatalytic conversion of CO<sub>2</sub> (CO<sub>2</sub>RR) to multi-carbon products has been an appealing strategy to reduce carbon emissions. However, rapid experimental discovery of efficient CO<sub>2</sub>RR electrocatalysts and fast recording of full product distribution information is non-trivial. Herein, we used an electrocatalyst testing platform featuring a home-built automatic flow cell to accelerate catalysts screening. Based on 364 effective data points from 42 Cu-lanthanide bimetallic catalysts obtained within 21 working hours, we found that Eu modification over Cu can promote C<sub>2+</sub> faradaic efficiency (FE). We have previously reported part of the screening data and the optimization of the Mg-Cu catalyst(<em>Angew. Chem.</em> <strong>2022</strong>, <em>134</em>, e202213423). Here we augmented the dataset by adding the lanthanide modifiers and reported the Eu-Cu catalyst resulted from the high-throughput investigation. Our characterizations revealed that the Eu<sup>2+</sup> reduced from Eu<sup>3+</sup> during the catalyst synthesis prevented the agglomeration of nanoparticles, thus making europium modifications stand out from other lanthanide metal modifiers on FE C<sub>2+</sub> enhancement. We then optimized the Eu-CuO<sub>x</sub> catalyst based on the above understanding to achieve ∼80% C<sub>2+</sub> FE at a high current density of 1.25 A cm<sup>−2</sup>.</p></div>","PeriodicalId":72302,"journal":{"name":"Artificial intelligence chemistry","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-02-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2949747724000149/pdfft?md5=d1c6b7f6973c2f825f4024a496be4cd7&pid=1-s2.0-S2949747724000149-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Rapid screening of copper-based bimetallic catalysts via automatic electrocatalysis platform: Electrocatalytic reduction of CO2 to C2+ products on europium-modified copper\",\"authors\":\"Yan Shen,&nbsp;Zihan Wang,&nbsp;Yihan Wang,&nbsp;Cheng Wang\",\"doi\":\"10.1016/j.aichem.2024.100056\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The electrocatalytic conversion of CO<sub>2</sub> (CO<sub>2</sub>RR) to multi-carbon products has been an appealing strategy to reduce carbon emissions. However, rapid experimental discovery of efficient CO<sub>2</sub>RR electrocatalysts and fast recording of full product distribution information is non-trivial. Herein, we used an electrocatalyst testing platform featuring a home-built automatic flow cell to accelerate catalysts screening. Based on 364 effective data points from 42 Cu-lanthanide bimetallic catalysts obtained within 21 working hours, we found that Eu modification over Cu can promote C<sub>2+</sub> faradaic efficiency (FE). We have previously reported part of the screening data and the optimization of the Mg-Cu catalyst(<em>Angew. Chem.</em> <strong>2022</strong>, <em>134</em>, e202213423). Here we augmented the dataset by adding the lanthanide modifiers and reported the Eu-Cu catalyst resulted from the high-throughput investigation. Our characterizations revealed that the Eu<sup>2+</sup> reduced from Eu<sup>3+</sup> during the catalyst synthesis prevented the agglomeration of nanoparticles, thus making europium modifications stand out from other lanthanide metal modifiers on FE C<sub>2+</sub> enhancement. We then optimized the Eu-CuO<sub>x</sub> catalyst based on the above understanding to achieve ∼80% C<sub>2+</sub> FE at a high current density of 1.25 A cm<sup>−2</sup>.</p></div>\",\"PeriodicalId\":72302,\"journal\":{\"name\":\"Artificial intelligence chemistry\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-02-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S2949747724000149/pdfft?md5=d1c6b7f6973c2f825f4024a496be4cd7&pid=1-s2.0-S2949747724000149-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Artificial intelligence chemistry\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2949747724000149\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Artificial intelligence chemistry","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2949747724000149","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

通过电催化将二氧化碳(CO2RR)转化为多碳产品一直是一种极具吸引力的碳减排策略。然而,通过实验快速发现高效的 CO2RR 电催化剂并快速记录完整的产品分布信息并非易事。在此,我们利用自建自动流动池的电催化剂测试平台来加速催化剂的筛选。基于在 21 个工作小时内从 42 种铜-镧系双金属催化剂中获得的 364 个有效数据点,我们发现在铜上进行 Eu 修饰可提高 C2+ 法拉第效率(FE)。我们曾报道过镁铜催化剂的部分筛选数据和优化方法(Angew.Chem.2022, 134, e202213423).在此,我们通过添加镧系元素改性剂扩充了数据集,并报告了高通量研究产生的Eu-Cu催化剂。我们的表征结果表明,在催化剂合成过程中,从 Eu3+ 中还原出的 Eu2+ 阻止了纳米颗粒的团聚,从而使铕改性在增强 FE C2+ 方面从其他镧系金属改性剂中脱颖而出。基于上述认识,我们对 Eu-CuOx 催化剂进行了优化,使其在 1.25 A cm-2 的高电流密度下实现了 ∼ 80% 的 C2+ FE。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Rapid screening of copper-based bimetallic catalysts via automatic electrocatalysis platform: Electrocatalytic reduction of CO2 to C2+ products on europium-modified copper

The electrocatalytic conversion of CO2 (CO2RR) to multi-carbon products has been an appealing strategy to reduce carbon emissions. However, rapid experimental discovery of efficient CO2RR electrocatalysts and fast recording of full product distribution information is non-trivial. Herein, we used an electrocatalyst testing platform featuring a home-built automatic flow cell to accelerate catalysts screening. Based on 364 effective data points from 42 Cu-lanthanide bimetallic catalysts obtained within 21 working hours, we found that Eu modification over Cu can promote C2+ faradaic efficiency (FE). We have previously reported part of the screening data and the optimization of the Mg-Cu catalyst(Angew. Chem. 2022, 134, e202213423). Here we augmented the dataset by adding the lanthanide modifiers and reported the Eu-Cu catalyst resulted from the high-throughput investigation. Our characterizations revealed that the Eu2+ reduced from Eu3+ during the catalyst synthesis prevented the agglomeration of nanoparticles, thus making europium modifications stand out from other lanthanide metal modifiers on FE C2+ enhancement. We then optimized the Eu-CuOx catalyst based on the above understanding to achieve ∼80% C2+ FE at a high current density of 1.25 A cm−2.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Artificial intelligence chemistry
Artificial intelligence chemistry Chemistry (General)
自引率
0.00%
发文量
0
审稿时长
21 days
期刊最新文献
Molecular similarity: Theory, applications, and perspectives Large-language models: The game-changers for materials science research Conf-GEM: A geometric information-assisted direct conformation generation model Top 20 influential AI-based technologies in chemistry User-friendly and industry-integrated AI for medicinal chemists and pharmaceuticals
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1