为亚千赫 CW-EPR 光谱仪生成具有低 AM 噪声的传输波

IF 2 3区 化学 Q3 BIOCHEMICAL RESEARCH METHODS Journal of magnetic resonance Pub Date : 2024-02-16 DOI:10.1016/j.jmr.2024.107633
Hideo Sato-Akaba , Tsukasa Sakai , Hiroshi Hirata
{"title":"为亚千赫 CW-EPR 光谱仪生成具有低 AM 噪声的传输波","authors":"Hideo Sato-Akaba ,&nbsp;Tsukasa Sakai ,&nbsp;Hiroshi Hirata","doi":"10.1016/j.jmr.2024.107633","DOIUrl":null,"url":null,"abstract":"<div><p>This study describes a technique to clean amplitude modulation (AM) noise of RF transmission waves, which is used to observe the sub-GHz CW-EPR spectrum. An RF transmitter amplifier that has the function of cleaning AM noise has been developed. Cleaning of the AM noise was owing to saturation of the output at the amplifier. Three stages of the amplifiers in series could effectively suppress the AM noise to about –176 dBc/Hz and –183 dBc/Hz at offset frequency of 10 kHz and 100 kHz, respectively at the carrier frequency of 750 MHz and the output power of 29 dBm. Since phase modulation (PM) noise is suppressed by phase sensitive detection, the AM noise in the transmission is dominant cause of the noise in the sub-GHz CW-EPR absorption spectrum using a reflection bridge, which depends on the quality factor of the resonator and the power of the RF transmission. The additive phase modulation (PM) noise of this amplifier was –171 dBc/Hz at an offset frequency of 100 kHz, which indicated that the frequency modulation (FM) of the transmission wave was not distorted with this amplifier. Therefore, conventional CW-EPR spectrometers that typically require FM for automatic frequency control or automatic tunning control can use this technique to increase sensitivity.</p></div>","PeriodicalId":16267,"journal":{"name":"Journal of magnetic resonance","volume":"360 ","pages":"Article 107633"},"PeriodicalIF":2.0000,"publicationDate":"2024-02-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Generation of transmission wave with low AM noise for sub-GHz CW-EPR spectrometer\",\"authors\":\"Hideo Sato-Akaba ,&nbsp;Tsukasa Sakai ,&nbsp;Hiroshi Hirata\",\"doi\":\"10.1016/j.jmr.2024.107633\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>This study describes a technique to clean amplitude modulation (AM) noise of RF transmission waves, which is used to observe the sub-GHz CW-EPR spectrum. An RF transmitter amplifier that has the function of cleaning AM noise has been developed. Cleaning of the AM noise was owing to saturation of the output at the amplifier. Three stages of the amplifiers in series could effectively suppress the AM noise to about –176 dBc/Hz and –183 dBc/Hz at offset frequency of 10 kHz and 100 kHz, respectively at the carrier frequency of 750 MHz and the output power of 29 dBm. Since phase modulation (PM) noise is suppressed by phase sensitive detection, the AM noise in the transmission is dominant cause of the noise in the sub-GHz CW-EPR absorption spectrum using a reflection bridge, which depends on the quality factor of the resonator and the power of the RF transmission. The additive phase modulation (PM) noise of this amplifier was –171 dBc/Hz at an offset frequency of 100 kHz, which indicated that the frequency modulation (FM) of the transmission wave was not distorted with this amplifier. Therefore, conventional CW-EPR spectrometers that typically require FM for automatic frequency control or automatic tunning control can use this technique to increase sensitivity.</p></div>\",\"PeriodicalId\":16267,\"journal\":{\"name\":\"Journal of magnetic resonance\",\"volume\":\"360 \",\"pages\":\"Article 107633\"},\"PeriodicalIF\":2.0000,\"publicationDate\":\"2024-02-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of magnetic resonance\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S109078072400017X\",\"RegionNum\":3,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"BIOCHEMICAL RESEARCH METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of magnetic resonance","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S109078072400017X","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0

摘要

本研究介绍了一种清除射频传输波振幅调制(AM)噪声的技术,该技术用于观测亚千赫CW-EPR频谱。研究开发了一种具有清除调幅噪声功能的射频发射放大器。AM 噪声的清除是由于放大器的输出饱和所致。在载波频率为 750 MHz、输出功率为 29 dBm 的情况下,三级串联放大器可有效抑制 AM 噪声,在偏移频率为 10 kHz 和 100 kHz 时分别抑制到约 -176 dBc/Hz 和 -183 dBc/Hz。由于相位调制(PM)噪声被相敏检测所抑制,因此传输中的调幅噪声是使用反射桥的亚千赫 CW-EPR 吸收光谱中噪声的主要原因,这取决于谐振器的品质因数和射频传输的功率。在偏移频率为 100 kHz 时,该放大器的加性相位调制(PM)噪声为 -171 dBc/Hz,这表明传输波的频率调制(FM)并未因该放大器而失真。因此,通常需要调频来进行自动频率控制或自动调谐控制的传统 CW-EPR 光谱仪可以利用这项技术来提高灵敏度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Generation of transmission wave with low AM noise for sub-GHz CW-EPR spectrometer

This study describes a technique to clean amplitude modulation (AM) noise of RF transmission waves, which is used to observe the sub-GHz CW-EPR spectrum. An RF transmitter amplifier that has the function of cleaning AM noise has been developed. Cleaning of the AM noise was owing to saturation of the output at the amplifier. Three stages of the amplifiers in series could effectively suppress the AM noise to about –176 dBc/Hz and –183 dBc/Hz at offset frequency of 10 kHz and 100 kHz, respectively at the carrier frequency of 750 MHz and the output power of 29 dBm. Since phase modulation (PM) noise is suppressed by phase sensitive detection, the AM noise in the transmission is dominant cause of the noise in the sub-GHz CW-EPR absorption spectrum using a reflection bridge, which depends on the quality factor of the resonator and the power of the RF transmission. The additive phase modulation (PM) noise of this amplifier was –171 dBc/Hz at an offset frequency of 100 kHz, which indicated that the frequency modulation (FM) of the transmission wave was not distorted with this amplifier. Therefore, conventional CW-EPR spectrometers that typically require FM for automatic frequency control or automatic tunning control can use this technique to increase sensitivity.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
3.80
自引率
13.60%
发文量
150
审稿时长
69 days
期刊介绍: The Journal of Magnetic Resonance presents original technical and scientific papers in all aspects of magnetic resonance, including nuclear magnetic resonance spectroscopy (NMR) of solids and liquids, electron spin/paramagnetic resonance (EPR), in vivo magnetic resonance imaging (MRI) and spectroscopy (MRS), nuclear quadrupole resonance (NQR) and magnetic resonance phenomena at nearly zero fields or in combination with optics. The Journal''s main aims include deepening the physical principles underlying all these spectroscopies, publishing significant theoretical and experimental results leading to spectral and spatial progress in these areas, and opening new MR-based applications in chemistry, biology and medicine. The Journal also seeks descriptions of novel apparatuses, new experimental protocols, and new procedures of data analysis and interpretation - including computational and quantum-mechanical methods - capable of advancing MR spectroscopy and imaging.
期刊最新文献
A compact and mobile stray-field NMR sensor Eliminating electromagnetic interference for RF shielding-free MRI via k-space convolution: Insights from MR parallel imaging advances Optimizing EPR pulses for broadband excitation and refocusing Proton hyperfine couplings and Overhauser DNP 16-channel sleeve antenna array based on passive decoupling method at 14 T
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1