Xiaosong Shi , Dinesh Pal Mudaranthakam , Jo A. Wick , David Streeter , Jeffrey A. Thompson , Natalie R. Streeter , Tara L. Lin , Joseph Hines II , Matthew S. Mayo , Byron J. Gajewski
{"title":"使用贝叶斯层次模型对癌症中心的临床试验应计进行绩效评估","authors":"Xiaosong Shi , Dinesh Pal Mudaranthakam , Jo A. Wick , David Streeter , Jeffrey A. Thompson , Natalie R. Streeter , Tara L. Lin , Joseph Hines II , Matthew S. Mayo , Byron J. Gajewski","doi":"10.1016/j.conctc.2024.101281","DOIUrl":null,"url":null,"abstract":"<div><h3>Introduction</h3><p>Slow patient accrual in cancer clinical trials is always a concern. In 2021, the University of Kansas Comprehensive Cancer Center (KUCC), an NCI-designated comprehensive cancer center, implemented the Curated Cancer Clinical Outcomes Database (C3OD) to perform trial feasibility analyses using real-time electronic medical record data. In this study, we proposed a Bayesian hierarchical model to evaluate annual cancer clinical trial accrual performance.</p></div><div><h3>Methods</h3><p>The Bayesian hierarchical model uses Poisson models to describe the accrual performance of individual cancer clinical trials and a hierarchical component to describe the variation in performance across studies. Additionally, this model evaluates the impacts of the C3OD and the COVID-19 pandemic using posterior probabilities across evaluation years. The performance metric is the ratio of the observed accrual rate to the target accrual rate.</p></div><div><h3>Results</h3><p>Posterior medians of the annual accrual performance at the KUCC from 2018 to 2023 are 0.233, 0.246, 0.197, 0.150, 0.254, and 0.340. The COVID-19 pandemic partly explains the drop in performance in 2020 and 2021. The posterior probability that annual accrual performance is better with C3OD in 2023 than pre-pandemic (2019) is 0.935.</p></div><div><h3>Conclusions</h3><p>This study comprehensively evaluates the annual performance of clinical trial accrual at the KUCC, revealing a negative impact of COVID-19 and an ongoing positive impact of C3OD implementation. Two sensitivity analyses further validate the robustness of our model. Evaluating annual accrual performance across clinical trials is essential for a cancer center. The performance evaluation tools described in this paper are highly recommended for monitoring clinical trial accrual.</p></div>","PeriodicalId":37937,"journal":{"name":"Contemporary Clinical Trials Communications","volume":null,"pages":null},"PeriodicalIF":1.4000,"publicationDate":"2024-02-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2451865424000280/pdfft?md5=ff6bd5871d7cd8a61545f17f41326812&pid=1-s2.0-S2451865424000280-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Using Bayesian hierarchical modeling for performance evaluation of clinical trial accrual for a cancer center\",\"authors\":\"Xiaosong Shi , Dinesh Pal Mudaranthakam , Jo A. Wick , David Streeter , Jeffrey A. Thompson , Natalie R. Streeter , Tara L. Lin , Joseph Hines II , Matthew S. Mayo , Byron J. Gajewski\",\"doi\":\"10.1016/j.conctc.2024.101281\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><h3>Introduction</h3><p>Slow patient accrual in cancer clinical trials is always a concern. In 2021, the University of Kansas Comprehensive Cancer Center (KUCC), an NCI-designated comprehensive cancer center, implemented the Curated Cancer Clinical Outcomes Database (C3OD) to perform trial feasibility analyses using real-time electronic medical record data. In this study, we proposed a Bayesian hierarchical model to evaluate annual cancer clinical trial accrual performance.</p></div><div><h3>Methods</h3><p>The Bayesian hierarchical model uses Poisson models to describe the accrual performance of individual cancer clinical trials and a hierarchical component to describe the variation in performance across studies. Additionally, this model evaluates the impacts of the C3OD and the COVID-19 pandemic using posterior probabilities across evaluation years. The performance metric is the ratio of the observed accrual rate to the target accrual rate.</p></div><div><h3>Results</h3><p>Posterior medians of the annual accrual performance at the KUCC from 2018 to 2023 are 0.233, 0.246, 0.197, 0.150, 0.254, and 0.340. The COVID-19 pandemic partly explains the drop in performance in 2020 and 2021. The posterior probability that annual accrual performance is better with C3OD in 2023 than pre-pandemic (2019) is 0.935.</p></div><div><h3>Conclusions</h3><p>This study comprehensively evaluates the annual performance of clinical trial accrual at the KUCC, revealing a negative impact of COVID-19 and an ongoing positive impact of C3OD implementation. Two sensitivity analyses further validate the robustness of our model. Evaluating annual accrual performance across clinical trials is essential for a cancer center. The performance evaluation tools described in this paper are highly recommended for monitoring clinical trial accrual.</p></div>\",\"PeriodicalId\":37937,\"journal\":{\"name\":\"Contemporary Clinical Trials Communications\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.4000,\"publicationDate\":\"2024-02-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S2451865424000280/pdfft?md5=ff6bd5871d7cd8a61545f17f41326812&pid=1-s2.0-S2451865424000280-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Contemporary Clinical Trials Communications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2451865424000280\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MEDICINE, RESEARCH & EXPERIMENTAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Contemporary Clinical Trials Communications","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2451865424000280","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MEDICINE, RESEARCH & EXPERIMENTAL","Score":null,"Total":0}
Using Bayesian hierarchical modeling for performance evaluation of clinical trial accrual for a cancer center
Introduction
Slow patient accrual in cancer clinical trials is always a concern. In 2021, the University of Kansas Comprehensive Cancer Center (KUCC), an NCI-designated comprehensive cancer center, implemented the Curated Cancer Clinical Outcomes Database (C3OD) to perform trial feasibility analyses using real-time electronic medical record data. In this study, we proposed a Bayesian hierarchical model to evaluate annual cancer clinical trial accrual performance.
Methods
The Bayesian hierarchical model uses Poisson models to describe the accrual performance of individual cancer clinical trials and a hierarchical component to describe the variation in performance across studies. Additionally, this model evaluates the impacts of the C3OD and the COVID-19 pandemic using posterior probabilities across evaluation years. The performance metric is the ratio of the observed accrual rate to the target accrual rate.
Results
Posterior medians of the annual accrual performance at the KUCC from 2018 to 2023 are 0.233, 0.246, 0.197, 0.150, 0.254, and 0.340. The COVID-19 pandemic partly explains the drop in performance in 2020 and 2021. The posterior probability that annual accrual performance is better with C3OD in 2023 than pre-pandemic (2019) is 0.935.
Conclusions
This study comprehensively evaluates the annual performance of clinical trial accrual at the KUCC, revealing a negative impact of COVID-19 and an ongoing positive impact of C3OD implementation. Two sensitivity analyses further validate the robustness of our model. Evaluating annual accrual performance across clinical trials is essential for a cancer center. The performance evaluation tools described in this paper are highly recommended for monitoring clinical trial accrual.
期刊介绍:
Contemporary Clinical Trials Communications is an international peer reviewed open access journal that publishes articles pertaining to all aspects of clinical trials, including, but not limited to, design, conduct, analysis, regulation and ethics. Manuscripts submitted should appeal to a readership drawn from a wide range of disciplines including medicine, life science, pharmaceutical science, biostatistics, epidemiology, computer science, management science, behavioral science, and bioethics. Contemporary Clinical Trials Communications is unique in that it is outside the confines of disease specifications, and it strives to increase the transparency of medical research and reduce publication bias by publishing scientifically valid original research findings irrespective of their perceived importance, significance or impact. Both randomized and non-randomized trials are within the scope of the Journal. Some common topics include trial design rationale and methods, operational methodologies and challenges, and positive and negative trial results. In addition to original research, the Journal also welcomes other types of communications including, but are not limited to, methodology reviews, perspectives and discussions. Through timely dissemination of advances in clinical trials, the goal of Contemporary Clinical Trials Communications is to serve as a platform to enhance the communication and collaboration within the global clinical trials community that ultimately advances this field of research for the benefit of patients.