{"title":"利用深度学习加强可再生能源供应链的网络韧性:调查","authors":"Malka N. Halgamuge","doi":"10.1109/COMST.2024.3365076","DOIUrl":null,"url":null,"abstract":"Deep learning shows immense potential for strengthening the cyber-resilience of renewable energy supply chains. However, research gaps in comprehensive benchmarks, real-world model evaluations, and data generation tailored to the renewable domain persist. This study explores applying state-of-the-art deep learning techniques to secure renewable supply chains, drawing insights from over 300 publications. We aim to provide an updated, rigorous analysis of deep learning applications in this field to guide future research. We systematically review literature spanning 2020–2023, retrieving relevant articles from major databases. We examine deep learning’s role in intrusion/anomaly detection, supply chain cyberattack detection frameworks, security standards, historical attack analysis, data management strategies, model architectures, and supply chain cyber datasets. Our analysis demonstrates deep learning enables renewable supply chain anomaly detection by processing massively distributed data. We highlight crucial model design factors, including accuracy, adaptation capability, communication security, and resilience to adversarial threats. Comparing 18 major historical attacks informs risk analysis. We also showcase potential deep learning architectures, evaluating their relative strengths and limitations in security applications. Moreover, our review emphasizes best practices for renewable data curation, considering quality, labeling, access efficiency, and governance. Effective deep learning integration necessitates tailored benchmarks, model tuning guidance, and renewable energy data generation. Our multi-dimensional analysis motivates focused efforts on enhancing detection explanations, securing communications, continually retraining models, and establishing standardized assessment protocols. Overall, we provide a comprehensive roadmap to progress renewable supply chain cyber-resilience leveraging deep learning’s immense potential.","PeriodicalId":55029,"journal":{"name":"IEEE Communications Surveys and Tutorials","volume":"26 3","pages":"2146-2175"},"PeriodicalIF":34.4000,"publicationDate":"2024-02-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Leveraging Deep Learning to Strengthen the Cyber-Resilience of Renewable Energy Supply Chains: A Survey\",\"authors\":\"Malka N. Halgamuge\",\"doi\":\"10.1109/COMST.2024.3365076\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Deep learning shows immense potential for strengthening the cyber-resilience of renewable energy supply chains. However, research gaps in comprehensive benchmarks, real-world model evaluations, and data generation tailored to the renewable domain persist. This study explores applying state-of-the-art deep learning techniques to secure renewable supply chains, drawing insights from over 300 publications. We aim to provide an updated, rigorous analysis of deep learning applications in this field to guide future research. We systematically review literature spanning 2020–2023, retrieving relevant articles from major databases. We examine deep learning’s role in intrusion/anomaly detection, supply chain cyberattack detection frameworks, security standards, historical attack analysis, data management strategies, model architectures, and supply chain cyber datasets. Our analysis demonstrates deep learning enables renewable supply chain anomaly detection by processing massively distributed data. We highlight crucial model design factors, including accuracy, adaptation capability, communication security, and resilience to adversarial threats. Comparing 18 major historical attacks informs risk analysis. We also showcase potential deep learning architectures, evaluating their relative strengths and limitations in security applications. Moreover, our review emphasizes best practices for renewable data curation, considering quality, labeling, access efficiency, and governance. Effective deep learning integration necessitates tailored benchmarks, model tuning guidance, and renewable energy data generation. Our multi-dimensional analysis motivates focused efforts on enhancing detection explanations, securing communications, continually retraining models, and establishing standardized assessment protocols. Overall, we provide a comprehensive roadmap to progress renewable supply chain cyber-resilience leveraging deep learning’s immense potential.\",\"PeriodicalId\":55029,\"journal\":{\"name\":\"IEEE Communications Surveys and Tutorials\",\"volume\":\"26 3\",\"pages\":\"2146-2175\"},\"PeriodicalIF\":34.4000,\"publicationDate\":\"2024-02-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Communications Surveys and Tutorials\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10433003/\",\"RegionNum\":1,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Communications Surveys and Tutorials","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10433003/","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
Leveraging Deep Learning to Strengthen the Cyber-Resilience of Renewable Energy Supply Chains: A Survey
Deep learning shows immense potential for strengthening the cyber-resilience of renewable energy supply chains. However, research gaps in comprehensive benchmarks, real-world model evaluations, and data generation tailored to the renewable domain persist. This study explores applying state-of-the-art deep learning techniques to secure renewable supply chains, drawing insights from over 300 publications. We aim to provide an updated, rigorous analysis of deep learning applications in this field to guide future research. We systematically review literature spanning 2020–2023, retrieving relevant articles from major databases. We examine deep learning’s role in intrusion/anomaly detection, supply chain cyberattack detection frameworks, security standards, historical attack analysis, data management strategies, model architectures, and supply chain cyber datasets. Our analysis demonstrates deep learning enables renewable supply chain anomaly detection by processing massively distributed data. We highlight crucial model design factors, including accuracy, adaptation capability, communication security, and resilience to adversarial threats. Comparing 18 major historical attacks informs risk analysis. We also showcase potential deep learning architectures, evaluating their relative strengths and limitations in security applications. Moreover, our review emphasizes best practices for renewable data curation, considering quality, labeling, access efficiency, and governance. Effective deep learning integration necessitates tailored benchmarks, model tuning guidance, and renewable energy data generation. Our multi-dimensional analysis motivates focused efforts on enhancing detection explanations, securing communications, continually retraining models, and establishing standardized assessment protocols. Overall, we provide a comprehensive roadmap to progress renewable supply chain cyber-resilience leveraging deep learning’s immense potential.
期刊介绍:
IEEE Communications Surveys & Tutorials is an online journal published by the IEEE Communications Society for tutorials and surveys covering all aspects of the communications field. Telecommunications technology is progressing at a rapid pace, and the IEEE Communications Society is committed to providing researchers and other professionals the information and tools to stay abreast. IEEE Communications Surveys and Tutorials focuses on integrating and adding understanding to the existing literature on communications, putting results in context. Whether searching for in-depth information about a familiar area or an introduction into a new area, IEEE Communications Surveys & Tutorials aims to be the premier source of peer-reviewed, comprehensive tutorials and surveys, and pointers to further sources. IEEE Communications Surveys & Tutorials publishes only articles exclusively written for IEEE Communications Surveys & Tutorials and go through a rigorous review process before their publication in the quarterly issues.
A tutorial article in the IEEE Communications Surveys & Tutorials should be designed to help the reader to become familiar with and learn something specific about a chosen topic. In contrast, the term survey, as applied here, is defined to mean a survey of the literature. A survey article in IEEE Communications Surveys & Tutorials should provide a comprehensive review of developments in a selected area, covering its development from its inception to its current state and beyond, and illustrating its development through liberal citations from the literature. Both tutorials and surveys should be tutorial in nature and should be written in a style comprehensible to readers outside the specialty of the article.