{"title":"尼泊尔现代单户住宅建筑的生命周期能源利用和碳排放","authors":"Ajay Kumar K.C. , Anish Ghimire , Bikash Adhikari , Hitesh Raj Pant , Bijay Thapa , Bivek Baral","doi":"10.1016/j.crsust.2024.100245","DOIUrl":null,"url":null,"abstract":"<div><p>The rapid urbanization and rural-urban migration trends have led to an increase in building construction activities, shifting from traditional practices to modern concrete structures. However, this transition has imposed significant environmental pressures, including heightened resource and energy demands, resulting in increased emissions. To gauge the environmental impact of construction, a thorough examination of each phase is crucial. This study used the Life Cycle Assessment (LCA) tool, based on ISO 14040:2006, ISO 14044:2006, and EN 15978:2011, to evaluate the carbon dioxide equivalent (CO<sub>2</sub>-eq) emissions throughout the complete life cycle of a modern single-family residential building. The findings reveal a total energy use of 6411.33 MJ per square meter and emissions of 718.35 kg CO<sub>2</sub>-eq per square meter over the building's lifespan of 50 years. Notably, the production of building materials and the construction phase contribute to the highest percentage (60.29%) of the total life cycle emissions owing to 49.51% of energy use. In contrast, emissions during the operational phase are relatively lower, attributed to increased electricity usage for cooking and minimal energy consumption for heating and cooling. Additionally, the study suggests that achieving complete electricity sufficiency within the country could reduce building emissions by 39.30%, as fossil fuel-based imports from India would be replaced with cleaner hydroelectricity.</p></div>","PeriodicalId":34472,"journal":{"name":"Current Research in Environmental Sustainability","volume":"7 ","pages":"Article 100245"},"PeriodicalIF":3.7000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2666049024000057/pdfft?md5=8791b2a6ca8c6cd8adfcf8f4fb1666bd&pid=1-s2.0-S2666049024000057-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Life cycle energy use and carbon emission of a modern single-family residential building in Nepal\",\"authors\":\"Ajay Kumar K.C. , Anish Ghimire , Bikash Adhikari , Hitesh Raj Pant , Bijay Thapa , Bivek Baral\",\"doi\":\"10.1016/j.crsust.2024.100245\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The rapid urbanization and rural-urban migration trends have led to an increase in building construction activities, shifting from traditional practices to modern concrete structures. However, this transition has imposed significant environmental pressures, including heightened resource and energy demands, resulting in increased emissions. To gauge the environmental impact of construction, a thorough examination of each phase is crucial. This study used the Life Cycle Assessment (LCA) tool, based on ISO 14040:2006, ISO 14044:2006, and EN 15978:2011, to evaluate the carbon dioxide equivalent (CO<sub>2</sub>-eq) emissions throughout the complete life cycle of a modern single-family residential building. The findings reveal a total energy use of 6411.33 MJ per square meter and emissions of 718.35 kg CO<sub>2</sub>-eq per square meter over the building's lifespan of 50 years. Notably, the production of building materials and the construction phase contribute to the highest percentage (60.29%) of the total life cycle emissions owing to 49.51% of energy use. In contrast, emissions during the operational phase are relatively lower, attributed to increased electricity usage for cooking and minimal energy consumption for heating and cooling. Additionally, the study suggests that achieving complete electricity sufficiency within the country could reduce building emissions by 39.30%, as fossil fuel-based imports from India would be replaced with cleaner hydroelectricity.</p></div>\",\"PeriodicalId\":34472,\"journal\":{\"name\":\"Current Research in Environmental Sustainability\",\"volume\":\"7 \",\"pages\":\"Article 100245\"},\"PeriodicalIF\":3.7000,\"publicationDate\":\"2024-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S2666049024000057/pdfft?md5=8791b2a6ca8c6cd8adfcf8f4fb1666bd&pid=1-s2.0-S2666049024000057-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Current Research in Environmental Sustainability\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2666049024000057\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENVIRONMENTAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current Research in Environmental Sustainability","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666049024000057","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0
摘要
快速城市化和农村人口向城市迁移的趋势导致建筑活动增加,从传统做法转向现代混凝土结构。然而,这种转变带来了巨大的环境压力,包括资源和能源需求增加,导致排放量增加。要衡量建筑对环境的影响,对每个阶段进行彻底检查至关重要。本研究根据 ISO 14040:2006、ISO 14044:2006 和 EN 15978:2011,使用生命周期评估(LCA)工具,评估了现代单户住宅建筑在整个生命周期中的二氧化碳当量(CO2-eq)排放量。研究结果表明,在建筑 50 年的生命周期内,每平方米的总能耗为 6411.33 兆焦耳,每平方米的二氧化碳排放量为 718.35 千克。值得注意的是,由于 49.51% 的能源使用量,建筑材料的生产和施工阶段的排放量占生命周期总排放量的比例最高(60.29%)。相比之下,运行阶段的排放量相对较低,原因是烹饪用电量增加,而供暖和制冷的能耗最小。此外,研究还表明,在印度国内实现电力完全充足可使建筑排放量减少 39.30%,因为从印度进口的化石燃料将被更清洁的水力发电所取代。
Life cycle energy use and carbon emission of a modern single-family residential building in Nepal
The rapid urbanization and rural-urban migration trends have led to an increase in building construction activities, shifting from traditional practices to modern concrete structures. However, this transition has imposed significant environmental pressures, including heightened resource and energy demands, resulting in increased emissions. To gauge the environmental impact of construction, a thorough examination of each phase is crucial. This study used the Life Cycle Assessment (LCA) tool, based on ISO 14040:2006, ISO 14044:2006, and EN 15978:2011, to evaluate the carbon dioxide equivalent (CO2-eq) emissions throughout the complete life cycle of a modern single-family residential building. The findings reveal a total energy use of 6411.33 MJ per square meter and emissions of 718.35 kg CO2-eq per square meter over the building's lifespan of 50 years. Notably, the production of building materials and the construction phase contribute to the highest percentage (60.29%) of the total life cycle emissions owing to 49.51% of energy use. In contrast, emissions during the operational phase are relatively lower, attributed to increased electricity usage for cooking and minimal energy consumption for heating and cooling. Additionally, the study suggests that achieving complete electricity sufficiency within the country could reduce building emissions by 39.30%, as fossil fuel-based imports from India would be replaced with cleaner hydroelectricity.