通过体细胞胚胎发生提高埃及黄瓜(Cucumis sativus L.)栽培品种的体外再生能力和镰刀菌枯萎病抗性

IF 3.5 Q3 Biochemistry, Genetics and Molecular Biology Journal of Genetic Engineering and Biotechnology Pub Date : 2024-02-23 DOI:10.1016/j.jgeb.2024.100360
Hamdy M. Hamza , Rana H. Diab , Ismael A. Khatab , Reda M. Gaafar , Mohamed Elhiti
{"title":"通过体细胞胚胎发生提高埃及黄瓜(Cucumis sativus L.)栽培品种的体外再生能力和镰刀菌枯萎病抗性","authors":"Hamdy M. Hamza ,&nbsp;Rana H. Diab ,&nbsp;Ismael A. Khatab ,&nbsp;Reda M. Gaafar ,&nbsp;Mohamed Elhiti","doi":"10.1016/j.jgeb.2024.100360","DOIUrl":null,"url":null,"abstract":"<div><h3>Background</h3><p>Somatic embryogenesis offers a reliable method for cucumber (<em>Cucumis sativus</em> L.) regeneration and genetic enhancement against Fusarium wilt. This study aimed to establish a tailored somatic embryogenesis system for Egyptian cultivars, fostering genetic improvements and Fusarium wilt-resistance lines.</p></div><div><h3>Results</h3><p>Employing the Optimal Arbitrary Design (OAD) approach, we optimized the induction medium, initiating prolific embryogenic calli (53.3 %) at 1 mg/L 2,4-D. The cotyledonary leaf (CL) was the preferred explant, showing 60 % embryogenic callus development. Bieth Alpha exhibited higher responsiveness, generating ∼ 18 somatic embryos per explant compared to Prince's ∼ 10. Somatic embryogenesis system validation used quantitative RT-PCR, showing <em>Cucumis sativus</em> splicing factor 3B subunit (<em>CUS1</em>) and an embryogenesis marker gene expression exclusively within embryogenic calli and mainly during embryogenesis initiation. Evaluating fungal toxin filtrate concentrations for selecting embryogenic calli, the S2 selection (25 % filtrate, four subculture cycles) was chosen for somatic embryo development. To gauge the ramifications of selection at the genetic stratum, an in-depth analysis was executed. A cluster analysis grounded in ISSR banding patterns revealed a distinct separation between <em>in vivo</em>-cultivated plants of the two cultivars and regenerated plants devoid of pathogen filtrate treatment or those regenerated post-filtrate treatment. This segregation distinctly underscores the discernible genetic impact of the selection process.</p></div><div><h3>Conclusions</h3><p>The highest embryogenic capacity (53.3%) was achieved in this study by optimizing the induction stage, which demonstrated the optimal concentrations of BA and 2,4-D for induced proembryonic masses. Moreover, consistent gene expression throughout both stages of embryogenesis suggests that our system unequivocally follows the somatic embryogenesis pathway.</p></div>","PeriodicalId":53463,"journal":{"name":"Journal of Genetic Engineering and Biotechnology","volume":"22 1","pages":"Article 100360"},"PeriodicalIF":3.5000,"publicationDate":"2024-02-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1687157X24000635/pdfft?md5=cf3bc10f225c5c63a04450898a99b8ee&pid=1-s2.0-S1687157X24000635-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Enhancing in vitro regeneration via somatic embryogenesis and Fusarium wilt resistance of Egyptian cucumber (Cucumis sativus L.) cultivars\",\"authors\":\"Hamdy M. Hamza ,&nbsp;Rana H. Diab ,&nbsp;Ismael A. Khatab ,&nbsp;Reda M. Gaafar ,&nbsp;Mohamed Elhiti\",\"doi\":\"10.1016/j.jgeb.2024.100360\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><h3>Background</h3><p>Somatic embryogenesis offers a reliable method for cucumber (<em>Cucumis sativus</em> L.) regeneration and genetic enhancement against Fusarium wilt. This study aimed to establish a tailored somatic embryogenesis system for Egyptian cultivars, fostering genetic improvements and Fusarium wilt-resistance lines.</p></div><div><h3>Results</h3><p>Employing the Optimal Arbitrary Design (OAD) approach, we optimized the induction medium, initiating prolific embryogenic calli (53.3 %) at 1 mg/L 2,4-D. The cotyledonary leaf (CL) was the preferred explant, showing 60 % embryogenic callus development. Bieth Alpha exhibited higher responsiveness, generating ∼ 18 somatic embryos per explant compared to Prince's ∼ 10. Somatic embryogenesis system validation used quantitative RT-PCR, showing <em>Cucumis sativus</em> splicing factor 3B subunit (<em>CUS1</em>) and an embryogenesis marker gene expression exclusively within embryogenic calli and mainly during embryogenesis initiation. Evaluating fungal toxin filtrate concentrations for selecting embryogenic calli, the S2 selection (25 % filtrate, four subculture cycles) was chosen for somatic embryo development. To gauge the ramifications of selection at the genetic stratum, an in-depth analysis was executed. A cluster analysis grounded in ISSR banding patterns revealed a distinct separation between <em>in vivo</em>-cultivated plants of the two cultivars and regenerated plants devoid of pathogen filtrate treatment or those regenerated post-filtrate treatment. This segregation distinctly underscores the discernible genetic impact of the selection process.</p></div><div><h3>Conclusions</h3><p>The highest embryogenic capacity (53.3%) was achieved in this study by optimizing the induction stage, which demonstrated the optimal concentrations of BA and 2,4-D for induced proembryonic masses. Moreover, consistent gene expression throughout both stages of embryogenesis suggests that our system unequivocally follows the somatic embryogenesis pathway.</p></div>\",\"PeriodicalId\":53463,\"journal\":{\"name\":\"Journal of Genetic Engineering and Biotechnology\",\"volume\":\"22 1\",\"pages\":\"Article 100360\"},\"PeriodicalIF\":3.5000,\"publicationDate\":\"2024-02-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S1687157X24000635/pdfft?md5=cf3bc10f225c5c63a04450898a99b8ee&pid=1-s2.0-S1687157X24000635-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Genetic Engineering and Biotechnology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1687157X24000635\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Biochemistry, Genetics and Molecular Biology\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Genetic Engineering and Biotechnology","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1687157X24000635","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Biochemistry, Genetics and Molecular Biology","Score":null,"Total":0}
引用次数: 0

摘要

背景体细胞胚胎发生是黄瓜(Cucumis sativus L.)再生和抗镰刀菌枯萎病遗传改良的可靠方法。本研究旨在为埃及栽培品种建立一个量身定制的体细胞胚胎发生系统,促进遗传改良和抗镰刀菌枯萎病品系的培育。结果采用最优任意设计(OAD)方法,我们对诱导培养基进行了优化,在 1 mg/L 2,4-D 的条件下,胚胎发生胼胝体(53.3%)开始大量繁殖。子叶(CL)是首选的外植体,显示出 60% 的胚性胼胝体发育。Bieth Alpha 的反应性更高,每个外植体可产生 18 ∼ 18 个体细胞胚,而 Prince 的反应性为 10 ∼ 10 个。体细胞胚胎发生系统验证采用了定量 RT-PCR,结果表明 Cucumis sativus 剪接因子 3B 亚基(CUS1)和胚胎发生标记基因只在胚胎发生胼胝体中表达,且主要在胚胎发生起始阶段表达。在评估用于选择胚胎发生胼胝体的真菌毒素滤液浓度时,选择了 S2 选择(25% 滤液,四个亚培养周期)用于体细胞胚胎发育。为了评估基因层选择的影响,我们进行了深入分析。以 ISSR 带型为基础的聚类分析显示,两个栽培品种的体内栽培植株与未经病原体滤液处理或滤液处理后再生的植株之间存在明显的分离。结论本研究通过优化诱导阶段实现了最高的胚胎发生能力(53.3%),证明了 BA 和 2,4-D 诱导原胚质量的最佳浓度。此外,胚胎发生两个阶段的基因表达一致,表明我们的系统明确遵循体细胞胚胎发生途径。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Enhancing in vitro regeneration via somatic embryogenesis and Fusarium wilt resistance of Egyptian cucumber (Cucumis sativus L.) cultivars

Background

Somatic embryogenesis offers a reliable method for cucumber (Cucumis sativus L.) regeneration and genetic enhancement against Fusarium wilt. This study aimed to establish a tailored somatic embryogenesis system for Egyptian cultivars, fostering genetic improvements and Fusarium wilt-resistance lines.

Results

Employing the Optimal Arbitrary Design (OAD) approach, we optimized the induction medium, initiating prolific embryogenic calli (53.3 %) at 1 mg/L 2,4-D. The cotyledonary leaf (CL) was the preferred explant, showing 60 % embryogenic callus development. Bieth Alpha exhibited higher responsiveness, generating ∼ 18 somatic embryos per explant compared to Prince's ∼ 10. Somatic embryogenesis system validation used quantitative RT-PCR, showing Cucumis sativus splicing factor 3B subunit (CUS1) and an embryogenesis marker gene expression exclusively within embryogenic calli and mainly during embryogenesis initiation. Evaluating fungal toxin filtrate concentrations for selecting embryogenic calli, the S2 selection (25 % filtrate, four subculture cycles) was chosen for somatic embryo development. To gauge the ramifications of selection at the genetic stratum, an in-depth analysis was executed. A cluster analysis grounded in ISSR banding patterns revealed a distinct separation between in vivo-cultivated plants of the two cultivars and regenerated plants devoid of pathogen filtrate treatment or those regenerated post-filtrate treatment. This segregation distinctly underscores the discernible genetic impact of the selection process.

Conclusions

The highest embryogenic capacity (53.3%) was achieved in this study by optimizing the induction stage, which demonstrated the optimal concentrations of BA and 2,4-D for induced proembryonic masses. Moreover, consistent gene expression throughout both stages of embryogenesis suggests that our system unequivocally follows the somatic embryogenesis pathway.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Genetic Engineering and Biotechnology
Journal of Genetic Engineering and Biotechnology Biochemistry, Genetics and Molecular Biology-Biotechnology
CiteScore
5.70
自引率
5.70%
发文量
159
审稿时长
16 weeks
期刊介绍: Journal of genetic engineering and biotechnology is devoted to rapid publication of full-length research papers that leads to significant contribution in advancing knowledge in genetic engineering and biotechnology and provide novel perspectives in this research area. JGEB includes all major themes related to genetic engineering and recombinant DNA. The area of interest of JGEB includes but not restricted to: •Plant genetics •Animal genetics •Bacterial enzymes •Agricultural Biotechnology, •Biochemistry, •Biophysics, •Bioinformatics, •Environmental Biotechnology, •Industrial Biotechnology, •Microbial biotechnology, •Medical Biotechnology, •Bioenergy, Biosafety, •Biosecurity, •Bioethics, •GMOS, •Genomic, •Proteomic JGEB accepts
期刊最新文献
The current status of genetic biofortification in alleviating malnutrition in Africa Comprehensive virome profiling of sugarcane and simplified duplex OneStep RT-PCR assay reveals the prevalence of sugarcane streak mosaic virus along with sugarcane yellow leaf virus in India Genome-wide identification and expression analysis of the MORF gene family in celery reveals their potential role in chloroplast development Adropin a candidate diagnostic biomarker for cardiovascular disease in patients with chronic kidney disease Fungal secondary metabolites as a potential inhibitor of T315I- BCR::ABL1 mutant in chronic myeloid leukemia by molecular docking, molecular dynamics simulation and binding free energy exploration approaches
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1