评估受可替宁刺激的大鼠原代成骨细胞中 microRNA 表达谱的变化

IF 16.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY Accounts of Chemical Research Pub Date : 2024-10-01
Fengjuan Zhou, Runhe Liu, Lingke Huang, Zhiqun Tang, Hongkun Wu
{"title":"评估受可替宁刺激的大鼠原代成骨细胞中 microRNA 表达谱的变化","authors":"Fengjuan Zhou, Runhe Liu, Lingke Huang, Zhiqun Tang, Hongkun Wu","doi":"","DOIUrl":null,"url":null,"abstract":"<p><strong>Objective: </strong>Smoking stands as a significant factor contributing to aberrations in bone metabolism, while microRNAs are intricately linked to the regulation of bone metabolism. This study aimed to identify cotinine-responsive microRNAs (miRNAs) and downstream regulatory pathways of their target genes involved in the regulation of osteoblastic cells, providing a foundation for new treatments targeting miRNAs for the bone metabolism imbalance induced by smoking.</p><p><strong>Methods: </strong>Primary osteoblastic cells of Sprague-Dawley rats were cultured through a modified enzymatic digestion method from the cranial bone of neonatal rats and stimulated with a high concentration of cotinine (1000 ng/mL) for 7 days. Then, miRNA gene chip technology was utilized to detect the changes in miRNA expression profiles in cotinine-stimulated osteoblastic cells, and differential expression profiles of cotinine-responsive miRNAs in osteoblastic cells were identified. Real-time polymerase chain reaction was used to detect the levels of significantly differentially expressed miRNAs in rat osteoblastic cells. Gene ontology (GO) and Kyoto encyclopedia of Genes and Genomes (KEGG) pathway analyses were utilized to predict target genes of these miRNAs to reveal the potential biological functions and pathways.</p><p><strong>Results: </strong>We identified 6 statistically differentially expressed miRNAs in the miRNA microarray analysis, of which 3 were upregulated and 3 were downregulated. We chose bone metabolism-related miRNAs as the miRNAs of interest. Quantitative real-time polymerase chain reaction was used to detect the expression levels of the differentially expressed miRNAs, and only miR-210 was significantly upregulated (3.34-fold), consistent with the microarray data. GO and KEGG pathway analyses of predicted miR-210 target genes revealed that miR-210 might participate in numerous signaling pathways, such as the RAS, Rap, PI3K-Akt, and calcium signaling pathways.</p><p><strong>Conclusion: </strong>We found that the strongly upregulated miR-210 may play an important regulatory role in osteoblast cells' biological behavior and bone formation function. The GO analysis results showed that miR-210 mainly involved protein binding, transporter activity, growth factor binding, and ion channel activity. According to the results of the KEGG analysis, miR-210 might negatively regulate the PI3K-Akt signaling pathway, thus affecting the proliferation of osteoblastic cells. These findings suggest that miR-210 may be a potential target for regulating the imbalance of bone metabolism caused by smoking, offering a new direction for clinical treatment of patients with bone metabolism-related diseases.</p>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Evaluation of the Changes in microRNA Expression Profiles in Rat Primary Osteoblastic Cells Stimulated with Cotinine.\",\"authors\":\"Fengjuan Zhou, Runhe Liu, Lingke Huang, Zhiqun Tang, Hongkun Wu\",\"doi\":\"\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Objective: </strong>Smoking stands as a significant factor contributing to aberrations in bone metabolism, while microRNAs are intricately linked to the regulation of bone metabolism. This study aimed to identify cotinine-responsive microRNAs (miRNAs) and downstream regulatory pathways of their target genes involved in the regulation of osteoblastic cells, providing a foundation for new treatments targeting miRNAs for the bone metabolism imbalance induced by smoking.</p><p><strong>Methods: </strong>Primary osteoblastic cells of Sprague-Dawley rats were cultured through a modified enzymatic digestion method from the cranial bone of neonatal rats and stimulated with a high concentration of cotinine (1000 ng/mL) for 7 days. Then, miRNA gene chip technology was utilized to detect the changes in miRNA expression profiles in cotinine-stimulated osteoblastic cells, and differential expression profiles of cotinine-responsive miRNAs in osteoblastic cells were identified. Real-time polymerase chain reaction was used to detect the levels of significantly differentially expressed miRNAs in rat osteoblastic cells. Gene ontology (GO) and Kyoto encyclopedia of Genes and Genomes (KEGG) pathway analyses were utilized to predict target genes of these miRNAs to reveal the potential biological functions and pathways.</p><p><strong>Results: </strong>We identified 6 statistically differentially expressed miRNAs in the miRNA microarray analysis, of which 3 were upregulated and 3 were downregulated. We chose bone metabolism-related miRNAs as the miRNAs of interest. Quantitative real-time polymerase chain reaction was used to detect the expression levels of the differentially expressed miRNAs, and only miR-210 was significantly upregulated (3.34-fold), consistent with the microarray data. GO and KEGG pathway analyses of predicted miR-210 target genes revealed that miR-210 might participate in numerous signaling pathways, such as the RAS, Rap, PI3K-Akt, and calcium signaling pathways.</p><p><strong>Conclusion: </strong>We found that the strongly upregulated miR-210 may play an important regulatory role in osteoblast cells' biological behavior and bone formation function. The GO analysis results showed that miR-210 mainly involved protein binding, transporter activity, growth factor binding, and ion channel activity. According to the results of the KEGG analysis, miR-210 might negatively regulate the PI3K-Akt signaling pathway, thus affecting the proliferation of osteoblastic cells. These findings suggest that miR-210 may be a potential target for regulating the imbalance of bone metabolism caused by smoking, offering a new direction for clinical treatment of patients with bone metabolism-related diseases.</p>\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2024-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"3","ListUrlMain":"","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

目的:吸烟是导致骨代谢畸变的一个重要因素,而微小RNA与骨代谢的调控有着错综复杂的联系。本研究旨在确定可的松反应型微RNA(miRNA)及其靶基因参与调控成骨细胞的下游调控通路,为针对吸烟引起的骨代谢失衡的miRNA新疗法奠定基础:方法:采用改良酶解法从新生大鼠颅骨中培养 Sprague-Dawley 大鼠的原代成骨细胞,并用高浓度可替宁(1000 ng/mL)刺激 7 天。然后,利用 miRNA 基因芯片技术检测可替宁刺激的成骨细胞中 miRNA 表达谱的变化,并确定可替宁反应型 miRNA 在成骨细胞中的差异表达谱。实时聚合酶链反应用于检测大鼠成骨细胞中显著差异表达的 miRNA 水平。利用基因本体(GO)和京都基因组百科全书(KEGG)通路分析预测这些miRNA的靶基因,以揭示其潜在的生物学功能和通路:我们在 miRNA 微阵列分析中发现了 6 个差异表达的 miRNA,其中 3 个上调,3 个下调。我们选择了与骨代谢相关的 miRNA 作为研究对象。我们使用定量实时聚合酶链反应来检测差异表达的 miRNA 的表达水平,结果发现只有 miR-210 显著上调(3.34 倍),与芯片数据一致。对预测的miR-210靶基因进行的GO和KEGG通路分析表明,miR-210可能参与了许多信号通路,如RAS、Rap、PI3K-Akt和钙信号通路:结论:我们发现,强烈上调的 miR-210 可能在成骨细胞的生物学行为和骨形成功能中发挥重要的调控作用。GO分析结果显示,miR-210主要涉及蛋白质结合、转运体活性、生长因子结合和离子通道活性。根据 KEGG 分析结果,miR-210 可能会负向调节 PI3K-Akt 信号通路,从而影响成骨细胞的增殖。这些研究结果表明,miR-210 可能是调节吸烟引起的骨代谢失衡的潜在靶点,为临床治疗骨代谢相关疾病患者提供了新的方向。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Evaluation of the Changes in microRNA Expression Profiles in Rat Primary Osteoblastic Cells Stimulated with Cotinine.

Objective: Smoking stands as a significant factor contributing to aberrations in bone metabolism, while microRNAs are intricately linked to the regulation of bone metabolism. This study aimed to identify cotinine-responsive microRNAs (miRNAs) and downstream regulatory pathways of their target genes involved in the regulation of osteoblastic cells, providing a foundation for new treatments targeting miRNAs for the bone metabolism imbalance induced by smoking.

Methods: Primary osteoblastic cells of Sprague-Dawley rats were cultured through a modified enzymatic digestion method from the cranial bone of neonatal rats and stimulated with a high concentration of cotinine (1000 ng/mL) for 7 days. Then, miRNA gene chip technology was utilized to detect the changes in miRNA expression profiles in cotinine-stimulated osteoblastic cells, and differential expression profiles of cotinine-responsive miRNAs in osteoblastic cells were identified. Real-time polymerase chain reaction was used to detect the levels of significantly differentially expressed miRNAs in rat osteoblastic cells. Gene ontology (GO) and Kyoto encyclopedia of Genes and Genomes (KEGG) pathway analyses were utilized to predict target genes of these miRNAs to reveal the potential biological functions and pathways.

Results: We identified 6 statistically differentially expressed miRNAs in the miRNA microarray analysis, of which 3 were upregulated and 3 were downregulated. We chose bone metabolism-related miRNAs as the miRNAs of interest. Quantitative real-time polymerase chain reaction was used to detect the expression levels of the differentially expressed miRNAs, and only miR-210 was significantly upregulated (3.34-fold), consistent with the microarray data. GO and KEGG pathway analyses of predicted miR-210 target genes revealed that miR-210 might participate in numerous signaling pathways, such as the RAS, Rap, PI3K-Akt, and calcium signaling pathways.

Conclusion: We found that the strongly upregulated miR-210 may play an important regulatory role in osteoblast cells' biological behavior and bone formation function. The GO analysis results showed that miR-210 mainly involved protein binding, transporter activity, growth factor binding, and ion channel activity. According to the results of the KEGG analysis, miR-210 might negatively regulate the PI3K-Akt signaling pathway, thus affecting the proliferation of osteoblastic cells. These findings suggest that miR-210 may be a potential target for regulating the imbalance of bone metabolism caused by smoking, offering a new direction for clinical treatment of patients with bone metabolism-related diseases.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Accounts of Chemical Research
Accounts of Chemical Research 化学-化学综合
CiteScore
31.40
自引率
1.10%
发文量
312
审稿时长
2 months
期刊介绍: Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance. Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.
期刊最新文献
The change process questionnaire (CPQ): A psychometric validation. Differential Costs of Raising Grandchildren on Older Mother-Adult Child Relations in Black and White Families. Does Resilience Mediate the Relationship Between Negative Self-Image and Psychological Distress in Middle-Aged and Older Gay and Bisexual Men? Intergenerational Relations and Well-being Among Older Middle Eastern/Arab American Immigrants During the COVID-19 Pandemic. Caregiving Appraisals and Emotional Valence: Moderating Effects of Activity Participation.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1