在硅太阳能电池中采用镍和铜作为具有成本效益的替代触点

IF 8 2区 材料科学 Q1 ENERGY & FUELS Progress in Photovoltaics Pub Date : 2024-02-22 DOI:10.1002/pip.3792
Veysel Unsur
{"title":"在硅太阳能电池中采用镍和铜作为具有成本效益的替代触点","authors":"Veysel Unsur","doi":"10.1002/pip.3792","DOIUrl":null,"url":null,"abstract":"<p>Efficient metal contact formation is pivotal for the production of cost-effective, high-performance crystalline silicon (Si) solar cells. Traditionally, screen-printed silver (Ag) contacts on the front surface have dominated the industry owing to their simplicity, high throughput, and significant electrical benefits. However, the high cost associated with using over 13–20 mg/Wp of Ag can impede the development of truly cost-effective solar cells. Therefore, there is an urgent need to explore alternative, economically viable metals compatible with silicon substrates. This study reports on the application of a contact stack consisting of Ag, nickel (Ni), and copper (Cu) in Si solar cells. To prevent Schottky contact formation, Ag is implemented as a seed layer, whereas Ni and Cu form the metal bulk layer. The fabricated bi-layer stack without selective emitter exhibits a maximum efficiency of ~21.5%, a fill factor of 81.5%, and an average contact resistance of 5.88 mΩ·cm<sup>2</sup> for a monofacial PERC cell. Microstructure analysis demonstrates that the metals within the contacts remain distinct, and Cu diffusion into the silicon during the firing process is absent. Consequently, printed bi-layer contacts emerge as a promising alternative to Ag contacts, reducing the Ag consumption to below 2.5 mg/Wp per cell without compromising overall efficiency.</p>","PeriodicalId":223,"journal":{"name":"Progress in Photovoltaics","volume":"32 4","pages":"267-275"},"PeriodicalIF":8.0000,"publicationDate":"2024-02-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/pip.3792","citationCount":"0","resultStr":"{\"title\":\"Implementation of nickel and copper as cost-effective alternative contacts in silicon solar cells\",\"authors\":\"Veysel Unsur\",\"doi\":\"10.1002/pip.3792\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Efficient metal contact formation is pivotal for the production of cost-effective, high-performance crystalline silicon (Si) solar cells. Traditionally, screen-printed silver (Ag) contacts on the front surface have dominated the industry owing to their simplicity, high throughput, and significant electrical benefits. However, the high cost associated with using over 13–20 mg/Wp of Ag can impede the development of truly cost-effective solar cells. Therefore, there is an urgent need to explore alternative, economically viable metals compatible with silicon substrates. This study reports on the application of a contact stack consisting of Ag, nickel (Ni), and copper (Cu) in Si solar cells. To prevent Schottky contact formation, Ag is implemented as a seed layer, whereas Ni and Cu form the metal bulk layer. The fabricated bi-layer stack without selective emitter exhibits a maximum efficiency of ~21.5%, a fill factor of 81.5%, and an average contact resistance of 5.88 mΩ·cm<sup>2</sup> for a monofacial PERC cell. Microstructure analysis demonstrates that the metals within the contacts remain distinct, and Cu diffusion into the silicon during the firing process is absent. Consequently, printed bi-layer contacts emerge as a promising alternative to Ag contacts, reducing the Ag consumption to below 2.5 mg/Wp per cell without compromising overall efficiency.</p>\",\"PeriodicalId\":223,\"journal\":{\"name\":\"Progress in Photovoltaics\",\"volume\":\"32 4\",\"pages\":\"267-275\"},\"PeriodicalIF\":8.0000,\"publicationDate\":\"2024-02-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/pip.3792\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Progress in Photovoltaics\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/pip.3792\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENERGY & FUELS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Progress in Photovoltaics","FirstCategoryId":"88","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/pip.3792","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0

摘要

高效的金属触点形成是生产高性价比、高性能晶体硅(Si)太阳能电池的关键。传统上,前表面丝网印刷银(Ag)触点因其简单、高产能和显著的电气优势而在行业中占据主导地位。然而,使用超过 13-20 mg/Wp 的银所带来的高成本会阻碍真正具有成本效益的太阳能电池的开发。因此,迫切需要探索与硅衬底兼容的、经济上可行的替代金属。本研究报告介绍了在硅太阳能电池中应用由银、镍(Ni)和铜(Cu)组成的接触堆的情况。为防止形成肖特基接触,银被用作种子层,而镍和铜则构成金属体层。在单面 PERC 电池中,无选择性发射器的双层电池堆的最高效率为 21.5%,填充因子为 81.5%,平均接触电阻为 5.88 mΩ-cm2。微观结构分析表明,触点内的金属仍然是独特的,在烧结过程中没有铜扩散到硅中。因此,印刷双层触点有望替代银触点,将每个电池的银消耗量降至 2.5 mg/Wp 以下,而不会影响整体效率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Implementation of nickel and copper as cost-effective alternative contacts in silicon solar cells

Efficient metal contact formation is pivotal for the production of cost-effective, high-performance crystalline silicon (Si) solar cells. Traditionally, screen-printed silver (Ag) contacts on the front surface have dominated the industry owing to their simplicity, high throughput, and significant electrical benefits. However, the high cost associated with using over 13–20 mg/Wp of Ag can impede the development of truly cost-effective solar cells. Therefore, there is an urgent need to explore alternative, economically viable metals compatible with silicon substrates. This study reports on the application of a contact stack consisting of Ag, nickel (Ni), and copper (Cu) in Si solar cells. To prevent Schottky contact formation, Ag is implemented as a seed layer, whereas Ni and Cu form the metal bulk layer. The fabricated bi-layer stack without selective emitter exhibits a maximum efficiency of ~21.5%, a fill factor of 81.5%, and an average contact resistance of 5.88 mΩ·cm2 for a monofacial PERC cell. Microstructure analysis demonstrates that the metals within the contacts remain distinct, and Cu diffusion into the silicon during the firing process is absent. Consequently, printed bi-layer contacts emerge as a promising alternative to Ag contacts, reducing the Ag consumption to below 2.5 mg/Wp per cell without compromising overall efficiency.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Progress in Photovoltaics
Progress in Photovoltaics 工程技术-能源与燃料
CiteScore
18.10
自引率
7.50%
发文量
130
审稿时长
5.4 months
期刊介绍: Progress in Photovoltaics offers a prestigious forum for reporting advances in this rapidly developing technology, aiming to reach all interested professionals, researchers and energy policy-makers. The key criterion is that all papers submitted should report substantial “progress” in photovoltaics. Papers are encouraged that report substantial “progress” such as gains in independently certified solar cell efficiency, eligible for a new entry in the journal''s widely referenced Solar Cell Efficiency Tables. Examples of papers that will not be considered for publication are those that report development in materials without relation to data on cell performance, routine analysis, characterisation or modelling of cells or processing sequences, routine reports of system performance, improvements in electronic hardware design, or country programs, although invited papers may occasionally be solicited in these areas to capture accumulated “progress”.
期刊最新文献
Issue Information Photovoltaics Literature Survey (No. 194) Issue Information Investigation of Potential-Induced Degradation and Recovery in Perovskite Minimodules Role of Ag Addition on the Microscopic Material Properties of (Ag,Cu)(In,Ga)Se2 Absorbers and Their Effects on Losses in the Open-Circuit Voltage of Corresponding Devices
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1