{"title":"在基于视频的点云压缩中减少占用辅助属性伪影","authors":"Linyao Gao;Zhu Li;Lizhi Hou;Yiling Xu;Jun Sun","doi":"10.1109/TBC.2024.3353568","DOIUrl":null,"url":null,"abstract":"Video-based point cloud compression (V-PCC) has achieved remarkable compression efficiency, which converts point clouds into videos and leverages video codecs for coding. For lossy compression, the undesirable artifacts of attribute images always degrade the point clouds attribute reconstruction quality. In this paper, we propose an Occupancy-assisted Compression Artifact Removal Network (OCARNet) to remove the distortions of V-PCC decoded attribute images for high-quality point cloud attribute reconstruction. Specifically, the occupancy information is fed into network as a prior knowledge to provide more spatial and structural information and to assist in eliminating the distortions of the texture regions. To aggregate the occupancy information effectively, we design a multi-level feature fusion framework with Channel-Spatial Attention based Residual Blocks (CSARB), where the short and long residual connections are jointly employed to capture the local context and long-range dependency. Besides, we propose a Masked Mean Square Error (MMSE) loss function based on the occupancy information to train our proposed network to focus on estimating the attribute artifacts of the occupied regions. To the best of our knowledge, this is the first learning-based attribute artifact removal method for V-PCC. Experimental results demonstrate that our framework outperforms existing state-of-the-art methods and shows the effectiveness on both objective and subjective quality comparisons.","PeriodicalId":13159,"journal":{"name":"IEEE Transactions on Broadcasting","volume":"70 2","pages":"667-680"},"PeriodicalIF":3.2000,"publicationDate":"2024-01-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Occupancy-Assisted Attribute Artifact Reduction for Video-Based Point Cloud Compression\",\"authors\":\"Linyao Gao;Zhu Li;Lizhi Hou;Yiling Xu;Jun Sun\",\"doi\":\"10.1109/TBC.2024.3353568\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Video-based point cloud compression (V-PCC) has achieved remarkable compression efficiency, which converts point clouds into videos and leverages video codecs for coding. For lossy compression, the undesirable artifacts of attribute images always degrade the point clouds attribute reconstruction quality. In this paper, we propose an Occupancy-assisted Compression Artifact Removal Network (OCARNet) to remove the distortions of V-PCC decoded attribute images for high-quality point cloud attribute reconstruction. Specifically, the occupancy information is fed into network as a prior knowledge to provide more spatial and structural information and to assist in eliminating the distortions of the texture regions. To aggregate the occupancy information effectively, we design a multi-level feature fusion framework with Channel-Spatial Attention based Residual Blocks (CSARB), where the short and long residual connections are jointly employed to capture the local context and long-range dependency. Besides, we propose a Masked Mean Square Error (MMSE) loss function based on the occupancy information to train our proposed network to focus on estimating the attribute artifacts of the occupied regions. To the best of our knowledge, this is the first learning-based attribute artifact removal method for V-PCC. Experimental results demonstrate that our framework outperforms existing state-of-the-art methods and shows the effectiveness on both objective and subjective quality comparisons.\",\"PeriodicalId\":13159,\"journal\":{\"name\":\"IEEE Transactions on Broadcasting\",\"volume\":\"70 2\",\"pages\":\"667-680\"},\"PeriodicalIF\":3.2000,\"publicationDate\":\"2024-01-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Transactions on Broadcasting\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10416804/\",\"RegionNum\":1,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Broadcasting","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10416804/","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
Occupancy-Assisted Attribute Artifact Reduction for Video-Based Point Cloud Compression
Video-based point cloud compression (V-PCC) has achieved remarkable compression efficiency, which converts point clouds into videos and leverages video codecs for coding. For lossy compression, the undesirable artifacts of attribute images always degrade the point clouds attribute reconstruction quality. In this paper, we propose an Occupancy-assisted Compression Artifact Removal Network (OCARNet) to remove the distortions of V-PCC decoded attribute images for high-quality point cloud attribute reconstruction. Specifically, the occupancy information is fed into network as a prior knowledge to provide more spatial and structural information and to assist in eliminating the distortions of the texture regions. To aggregate the occupancy information effectively, we design a multi-level feature fusion framework with Channel-Spatial Attention based Residual Blocks (CSARB), where the short and long residual connections are jointly employed to capture the local context and long-range dependency. Besides, we propose a Masked Mean Square Error (MMSE) loss function based on the occupancy information to train our proposed network to focus on estimating the attribute artifacts of the occupied regions. To the best of our knowledge, this is the first learning-based attribute artifact removal method for V-PCC. Experimental results demonstrate that our framework outperforms existing state-of-the-art methods and shows the effectiveness on both objective and subjective quality comparisons.
期刊介绍:
The Society’s Field of Interest is “Devices, equipment, techniques and systems related to broadcast technology, including the production, distribution, transmission, and propagation aspects.” In addition to this formal FOI statement, which is used to provide guidance to the Publications Committee in the selection of content, the AdCom has further resolved that “broadcast systems includes all aspects of transmission, propagation, and reception.”