利用应力基函数求解平面弹性应力问题

IF 1.7 4区 工程技术 Q3 MATERIALS SCIENCE, MULTIDISCIPLINARY Mathematics and Mechanics of Solids Pub Date : 2024-02-14 DOI:10.1177/10812865231221994
Sankalp Tiwari, Anindya Chatterjee
{"title":"利用应力基函数求解平面弹性应力问题","authors":"Sankalp Tiwari, Anindya Chatterjee","doi":"10.1177/10812865231221994","DOIUrl":null,"url":null,"abstract":"The use of global displacement basis functions to solve boundary-value problems in linear elasticity is well established. No prior work uses a global stress tensor basis for such solutions. We present two such methods for solving stress problems in linear elasticity. In both methods, we split the sought stress σ into two parts, where neither part is required to satisfy strain compatibility. The first part, σ<jats:sub> p</jats:sub>, is any stress in equilibrium with the loading. The second part, σ<jats:sub> h</jats:sub> is a self-equilibrated stress field on the unloaded body. In both methods, σ<jats:sub> h</jats:sub> is expanded using tensor-valued global stress basis functions developed elsewhere. In the first method, the coefficients in the expansion are found by minimizing the strain energy based on the well-known complementary energy principle. For the second method, which is restricted to planar homogeneous isotropic bodies, we show that we merely need to minimize the squared L<jats:sup>2</jats:sup> norm of the trace of stress. For demonstration, we solve nine stress problems involving sharp corners, multiple-connectedness, non-zero net force and/or moment on an internal hole, body force, discontinuous surface traction, material inhomogeneity, and anisotropy. The first method presents a new application of a known principle. The second method presents a hitherto unreported principle, to the best of our knowledge.","PeriodicalId":49854,"journal":{"name":"Mathematics and Mechanics of Solids","volume":"42 1","pages":""},"PeriodicalIF":1.7000,"publicationDate":"2024-02-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Solution of planar elastic stress problems using stress basis functions\",\"authors\":\"Sankalp Tiwari, Anindya Chatterjee\",\"doi\":\"10.1177/10812865231221994\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The use of global displacement basis functions to solve boundary-value problems in linear elasticity is well established. No prior work uses a global stress tensor basis for such solutions. We present two such methods for solving stress problems in linear elasticity. In both methods, we split the sought stress σ into two parts, where neither part is required to satisfy strain compatibility. The first part, σ<jats:sub> p</jats:sub>, is any stress in equilibrium with the loading. The second part, σ<jats:sub> h</jats:sub> is a self-equilibrated stress field on the unloaded body. In both methods, σ<jats:sub> h</jats:sub> is expanded using tensor-valued global stress basis functions developed elsewhere. In the first method, the coefficients in the expansion are found by minimizing the strain energy based on the well-known complementary energy principle. For the second method, which is restricted to planar homogeneous isotropic bodies, we show that we merely need to minimize the squared L<jats:sup>2</jats:sup> norm of the trace of stress. For demonstration, we solve nine stress problems involving sharp corners, multiple-connectedness, non-zero net force and/or moment on an internal hole, body force, discontinuous surface traction, material inhomogeneity, and anisotropy. The first method presents a new application of a known principle. The second method presents a hitherto unreported principle, to the best of our knowledge.\",\"PeriodicalId\":49854,\"journal\":{\"name\":\"Mathematics and Mechanics of Solids\",\"volume\":\"42 1\",\"pages\":\"\"},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2024-02-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mathematics and Mechanics of Solids\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1177/10812865231221994\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematics and Mechanics of Solids","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1177/10812865231221994","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

使用全局位移基函数来求解线性弹性中的边界值问题已得到广泛认可。之前还没有工作使用全局应力张量基础来求解此类问题。我们提出了两种解决线性弹性中应力问题的方法。在这两种方法中,我们将寻求的应力 σ 分成两部分,其中任何一部分都不需要满足应变兼容性。第一部分,σ p,是与载荷平衡的任何应力。第二部分,σ h 是未加载体上的自平衡应力场。在这两种方法中,σ h 都是使用其他地方开发的张量值全局应力基函数展开的。在第一种方法中,根据著名的互补能原理,通过最小化应变能找到展开中的系数。第二种方法仅限于平面均质各向同性体,我们证明只需最小化应力迹的平方 L2 准则即可。为了演示,我们解决了九个应力问题,涉及尖角、多连通性、内孔上的非零净力和/或力矩、体力、不连续表面牵引、材料不均匀性和各向异性。第一种方法是对已知原理的新应用。据我们所知,第二种方法提出了一种迄今为止尚未报道过的原理。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Solution of planar elastic stress problems using stress basis functions
The use of global displacement basis functions to solve boundary-value problems in linear elasticity is well established. No prior work uses a global stress tensor basis for such solutions. We present two such methods for solving stress problems in linear elasticity. In both methods, we split the sought stress σ into two parts, where neither part is required to satisfy strain compatibility. The first part, σ p, is any stress in equilibrium with the loading. The second part, σ h is a self-equilibrated stress field on the unloaded body. In both methods, σ h is expanded using tensor-valued global stress basis functions developed elsewhere. In the first method, the coefficients in the expansion are found by minimizing the strain energy based on the well-known complementary energy principle. For the second method, which is restricted to planar homogeneous isotropic bodies, we show that we merely need to minimize the squared L2 norm of the trace of stress. For demonstration, we solve nine stress problems involving sharp corners, multiple-connectedness, non-zero net force and/or moment on an internal hole, body force, discontinuous surface traction, material inhomogeneity, and anisotropy. The first method presents a new application of a known principle. The second method presents a hitherto unreported principle, to the best of our knowledge.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Mathematics and Mechanics of Solids
Mathematics and Mechanics of Solids 工程技术-材料科学:综合
CiteScore
4.80
自引率
19.20%
发文量
159
审稿时长
1 months
期刊介绍: Mathematics and Mechanics of Solids is an international peer-reviewed journal that publishes the highest quality original innovative research in solid mechanics and materials science. The central aim of MMS is to publish original, well-written and self-contained research that elucidates the mechanical behaviour of solids with particular emphasis on mathematical principles. This journal is a member of the Committee on Publication Ethics (COPE).
期刊最新文献
Plane-stress analysis of a holed membrane at finite equibiaxial stretch Comment on “Explicit solutions in Cartesian coordinates for an elliptic hole in an infinite elastic plate” by M. Oore and S. Oore Sensitivity analysis of an inflated and extended fiber-reinforced membrane with different natural configurations of its constituents Finite-strain Poynting–Thomson model: Existence and linearization Reflection of plane waves from the free surface of a hard sphere-filled elastic metacomposite
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1