Y. X. Wang, X. L. Zhu, S. M. Weng, P. Li, X. F. Li, H. Ai, H. R. Pan, Z. M. Sheng
{"title":"利用两个不同频率的激光脉冲在等离子体中实现快速高效的光子减速","authors":"Y. X. Wang, X. L. Zhu, S. M. Weng, P. Li, X. F. Li, H. Ai, H. R. Pan, Z. M. Sheng","doi":"10.1063/5.0189638","DOIUrl":null,"url":null,"abstract":"The generation of ultrashort high-power light sources in the mid-infrared (mid-IR) to terahertz (THz) range is of interest for applications in a number of fields, from fundamental research to biology and medicine. Besides conventional laser technology, photon deceleration in plasma wakes provides an alternative approach to the generation of ultrashort mid-IR or THz pulses. Here, we present a photon deceleration scheme for the efficient generation of ultrashort mid-IR or THz pulses by using an intense driver laser pulse with a relatively short wavelength and a signal laser pulse with a relatively long wavelength. The signal pulse trails the driver pulse with an appropriate time delay such that it sits at the front of the second wake bubble that is driven by the driver pulse. Owing to its relatively long wavelength, the signal pulse will be subjected to a large gradient of the refractive index in the plasma wake bubble. Consequently, the photon deceleration in the plasma wake becomes faster and more efficient for signal pulses with longer wavelengths. This greatly enhances the capacity and efficiency of photon deceleration in the generation of ultrashort high-power light sources in the long-wavelength IR and THz spectral ranges.","PeriodicalId":54221,"journal":{"name":"Matter and Radiation at Extremes","volume":"31 1","pages":""},"PeriodicalIF":4.8000,"publicationDate":"2024-02-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Fast efficient photon deceleration in plasmas by using two laser pulses at different frequencies\",\"authors\":\"Y. X. Wang, X. L. Zhu, S. M. Weng, P. Li, X. F. Li, H. Ai, H. R. Pan, Z. M. Sheng\",\"doi\":\"10.1063/5.0189638\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The generation of ultrashort high-power light sources in the mid-infrared (mid-IR) to terahertz (THz) range is of interest for applications in a number of fields, from fundamental research to biology and medicine. Besides conventional laser technology, photon deceleration in plasma wakes provides an alternative approach to the generation of ultrashort mid-IR or THz pulses. Here, we present a photon deceleration scheme for the efficient generation of ultrashort mid-IR or THz pulses by using an intense driver laser pulse with a relatively short wavelength and a signal laser pulse with a relatively long wavelength. The signal pulse trails the driver pulse with an appropriate time delay such that it sits at the front of the second wake bubble that is driven by the driver pulse. Owing to its relatively long wavelength, the signal pulse will be subjected to a large gradient of the refractive index in the plasma wake bubble. Consequently, the photon deceleration in the plasma wake becomes faster and more efficient for signal pulses with longer wavelengths. This greatly enhances the capacity and efficiency of photon deceleration in the generation of ultrashort high-power light sources in the long-wavelength IR and THz spectral ranges.\",\"PeriodicalId\":54221,\"journal\":{\"name\":\"Matter and Radiation at Extremes\",\"volume\":\"31 1\",\"pages\":\"\"},\"PeriodicalIF\":4.8000,\"publicationDate\":\"2024-02-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Matter and Radiation at Extremes\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1063/5.0189638\",\"RegionNum\":1,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PHYSICS, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Matter and Radiation at Extremes","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1063/5.0189638","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
Fast efficient photon deceleration in plasmas by using two laser pulses at different frequencies
The generation of ultrashort high-power light sources in the mid-infrared (mid-IR) to terahertz (THz) range is of interest for applications in a number of fields, from fundamental research to biology and medicine. Besides conventional laser technology, photon deceleration in plasma wakes provides an alternative approach to the generation of ultrashort mid-IR or THz pulses. Here, we present a photon deceleration scheme for the efficient generation of ultrashort mid-IR or THz pulses by using an intense driver laser pulse with a relatively short wavelength and a signal laser pulse with a relatively long wavelength. The signal pulse trails the driver pulse with an appropriate time delay such that it sits at the front of the second wake bubble that is driven by the driver pulse. Owing to its relatively long wavelength, the signal pulse will be subjected to a large gradient of the refractive index in the plasma wake bubble. Consequently, the photon deceleration in the plasma wake becomes faster and more efficient for signal pulses with longer wavelengths. This greatly enhances the capacity and efficiency of photon deceleration in the generation of ultrashort high-power light sources in the long-wavelength IR and THz spectral ranges.
期刊介绍:
Matter and Radiation at Extremes (MRE), is committed to the publication of original and impactful research and review papers that address extreme states of matter and radiation, and the associated science and technology that are employed to produce and diagnose these conditions in the laboratory. Drivers, targets and diagnostics are included along with related numerical simulation and computational methods. It aims to provide a peer-reviewed platform for the international physics community and promote worldwide dissemination of the latest and impactful research in related fields.