论求解随机强阻尼波方程的全离散方案的强收敛性

IF 4.6 Q2 MATERIALS SCIENCE, BIOMATERIALS ACS Applied Bio Materials Pub Date : 2024-02-17 DOI:10.1002/num.23094
Chengqiang Xu, Yibo Wang, Wanrong Cao
{"title":"论求解随机强阻尼波方程的全离散方案的强收敛性","authors":"Chengqiang Xu, Yibo Wang, Wanrong Cao","doi":"10.1002/num.23094","DOIUrl":null,"url":null,"abstract":"This article develops an efficient fully discrete scheme for a stochastic strongly damped wave equation (SSDWE) driven by an additive noise and presents its error estimates in the strong sense. We use the truncated spectral expansion of the noise to get an approximate equation and prove its regularity. Then we establish a spatio-temporal discretization of the approximate equation by a finite element method in space and an exponential trapezoidal scheme in time. We prove that the combination can derive higher strong convergence order in time than the use of the piecewise approximation of the noise and the exponential Euler scheme or the implicit Euler scheme in time. Particularly, the temporal strong convergence order of the fully discrete scheme reaches <mjx-container aria-label=\"5 divided by 4 minus epsilon\" ctxtmenu_counter=\"0\" ctxtmenu_oldtabindex=\"1\" jax=\"CHTML\" role=\"application\" sre-explorer- style=\"font-size: 103%; position: relative;\" tabindex=\"0\"><mjx-math aria-hidden=\"true\"><mjx-semantics><mjx-mrow data-semantic-children=\"5,4\" data-semantic-content=\"3\" data-semantic- data-semantic-role=\"subtraction\" data-semantic-speech=\"5 divided by 4 minus epsilon\" data-semantic-type=\"infixop\"><mjx-mrow data-semantic-children=\"0,2\" data-semantic-content=\"1\" data-semantic- data-semantic-parent=\"6\" data-semantic-role=\"division\" data-semantic-type=\"infixop\"><mjx-mn data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"normal\" data-semantic- data-semantic-parent=\"5\" data-semantic-role=\"integer\" data-semantic-type=\"number\"><mjx-c></mjx-c></mjx-mn><mjx-mo data-semantic- data-semantic-operator=\"infixop,/\" data-semantic-parent=\"5\" data-semantic-role=\"division\" data-semantic-type=\"operator\" rspace=\"1\" space=\"1\"><mjx-c></mjx-c></mjx-mo><mjx-mn data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"normal\" data-semantic- data-semantic-parent=\"5\" data-semantic-role=\"integer\" data-semantic-type=\"number\"><mjx-c></mjx-c></mjx-mn></mjx-mrow><mjx-mo data-semantic- data-semantic-operator=\"infixop,−\" data-semantic-parent=\"6\" data-semantic-role=\"subtraction\" data-semantic-type=\"operator\" rspace=\"1\" style=\"margin-left: 0.056em;\"><mjx-c></mjx-c></mjx-mo><mjx-mi data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"italic\" data-semantic- data-semantic-parent=\"6\" data-semantic-role=\"greekletter\" data-semantic-type=\"identifier\"><mjx-c></mjx-c></mjx-mi></mjx-mrow></mjx-semantics></mjx-math><mjx-assistive-mml aria-hidden=\"true\" display=\"inline\" unselectable=\"on\"><math altimg=\"/cms/asset/246ca0b6-0dc3-49d5-80f8-c979b4835343/num23094-math-0001.png\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><semantics><mrow data-semantic-=\"\" data-semantic-children=\"5,4\" data-semantic-content=\"3\" data-semantic-role=\"subtraction\" data-semantic-speech=\"5 divided by 4 minus epsilon\" data-semantic-type=\"infixop\"><mrow data-semantic-=\"\" data-semantic-children=\"0,2\" data-semantic-content=\"1\" data-semantic-parent=\"6\" data-semantic-role=\"division\" data-semantic-type=\"infixop\"><mn data-semantic-=\"\" data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"normal\" data-semantic-parent=\"5\" data-semantic-role=\"integer\" data-semantic-type=\"number\">5</mn><mo data-semantic-=\"\" data-semantic-operator=\"infixop,/\" data-semantic-parent=\"5\" data-semantic-role=\"division\" data-semantic-type=\"operator\" stretchy=\"false\">/</mo><mn data-semantic-=\"\" data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"normal\" data-semantic-parent=\"5\" data-semantic-role=\"integer\" data-semantic-type=\"number\">4</mn></mrow><mo data-semantic-=\"\" data-semantic-operator=\"infixop,−\" data-semantic-parent=\"6\" data-semantic-role=\"subtraction\" data-semantic-type=\"operator\" form=\"prefix\">−</mo><mi data-semantic-=\"\" data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"italic\" data-semantic-parent=\"6\" data-semantic-role=\"greekletter\" data-semantic-type=\"identifier\">ε</mi></mrow>$$ 5/4-\\varepsilon $$</annotation></semantics></math></mjx-assistive-mml></mjx-container> for the one-dimensional space-time white noise, which overcomes the order barrier one. Moreover, we allow the covariance operator of the noise to be noncommutative with the Dirichlet Laplacian, which weakens the common assumptions on the noise in the literature. Finally, some numerical experiments in different spatial dimensions are presented to support our theoretical findings. By means of the piecewise spectral approximation of the noise, a piecewise version of the fully discrete scheme is constructed to fulfill a long-time simulation.","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-02-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On strong convergence of a fully discrete scheme for solving stochastic strongly damped wave equations\",\"authors\":\"Chengqiang Xu, Yibo Wang, Wanrong Cao\",\"doi\":\"10.1002/num.23094\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This article develops an efficient fully discrete scheme for a stochastic strongly damped wave equation (SSDWE) driven by an additive noise and presents its error estimates in the strong sense. We use the truncated spectral expansion of the noise to get an approximate equation and prove its regularity. Then we establish a spatio-temporal discretization of the approximate equation by a finite element method in space and an exponential trapezoidal scheme in time. We prove that the combination can derive higher strong convergence order in time than the use of the piecewise approximation of the noise and the exponential Euler scheme or the implicit Euler scheme in time. Particularly, the temporal strong convergence order of the fully discrete scheme reaches <mjx-container aria-label=\\\"5 divided by 4 minus epsilon\\\" ctxtmenu_counter=\\\"0\\\" ctxtmenu_oldtabindex=\\\"1\\\" jax=\\\"CHTML\\\" role=\\\"application\\\" sre-explorer- style=\\\"font-size: 103%; position: relative;\\\" tabindex=\\\"0\\\"><mjx-math aria-hidden=\\\"true\\\"><mjx-semantics><mjx-mrow data-semantic-children=\\\"5,4\\\" data-semantic-content=\\\"3\\\" data-semantic- data-semantic-role=\\\"subtraction\\\" data-semantic-speech=\\\"5 divided by 4 minus epsilon\\\" data-semantic-type=\\\"infixop\\\"><mjx-mrow data-semantic-children=\\\"0,2\\\" data-semantic-content=\\\"1\\\" data-semantic- data-semantic-parent=\\\"6\\\" data-semantic-role=\\\"division\\\" data-semantic-type=\\\"infixop\\\"><mjx-mn data-semantic-annotation=\\\"clearspeak:simple\\\" data-semantic-font=\\\"normal\\\" data-semantic- data-semantic-parent=\\\"5\\\" data-semantic-role=\\\"integer\\\" data-semantic-type=\\\"number\\\"><mjx-c></mjx-c></mjx-mn><mjx-mo data-semantic- data-semantic-operator=\\\"infixop,/\\\" data-semantic-parent=\\\"5\\\" data-semantic-role=\\\"division\\\" data-semantic-type=\\\"operator\\\" rspace=\\\"1\\\" space=\\\"1\\\"><mjx-c></mjx-c></mjx-mo><mjx-mn data-semantic-annotation=\\\"clearspeak:simple\\\" data-semantic-font=\\\"normal\\\" data-semantic- data-semantic-parent=\\\"5\\\" data-semantic-role=\\\"integer\\\" data-semantic-type=\\\"number\\\"><mjx-c></mjx-c></mjx-mn></mjx-mrow><mjx-mo data-semantic- data-semantic-operator=\\\"infixop,−\\\" data-semantic-parent=\\\"6\\\" data-semantic-role=\\\"subtraction\\\" data-semantic-type=\\\"operator\\\" rspace=\\\"1\\\" style=\\\"margin-left: 0.056em;\\\"><mjx-c></mjx-c></mjx-mo><mjx-mi data-semantic-annotation=\\\"clearspeak:simple\\\" data-semantic-font=\\\"italic\\\" data-semantic- data-semantic-parent=\\\"6\\\" data-semantic-role=\\\"greekletter\\\" data-semantic-type=\\\"identifier\\\"><mjx-c></mjx-c></mjx-mi></mjx-mrow></mjx-semantics></mjx-math><mjx-assistive-mml aria-hidden=\\\"true\\\" display=\\\"inline\\\" unselectable=\\\"on\\\"><math altimg=\\\"/cms/asset/246ca0b6-0dc3-49d5-80f8-c979b4835343/num23094-math-0001.png\\\" xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><semantics><mrow data-semantic-=\\\"\\\" data-semantic-children=\\\"5,4\\\" data-semantic-content=\\\"3\\\" data-semantic-role=\\\"subtraction\\\" data-semantic-speech=\\\"5 divided by 4 minus epsilon\\\" data-semantic-type=\\\"infixop\\\"><mrow data-semantic-=\\\"\\\" data-semantic-children=\\\"0,2\\\" data-semantic-content=\\\"1\\\" data-semantic-parent=\\\"6\\\" data-semantic-role=\\\"division\\\" data-semantic-type=\\\"infixop\\\"><mn data-semantic-=\\\"\\\" data-semantic-annotation=\\\"clearspeak:simple\\\" data-semantic-font=\\\"normal\\\" data-semantic-parent=\\\"5\\\" data-semantic-role=\\\"integer\\\" data-semantic-type=\\\"number\\\">5</mn><mo data-semantic-=\\\"\\\" data-semantic-operator=\\\"infixop,/\\\" data-semantic-parent=\\\"5\\\" data-semantic-role=\\\"division\\\" data-semantic-type=\\\"operator\\\" stretchy=\\\"false\\\">/</mo><mn data-semantic-=\\\"\\\" data-semantic-annotation=\\\"clearspeak:simple\\\" data-semantic-font=\\\"normal\\\" data-semantic-parent=\\\"5\\\" data-semantic-role=\\\"integer\\\" data-semantic-type=\\\"number\\\">4</mn></mrow><mo data-semantic-=\\\"\\\" data-semantic-operator=\\\"infixop,−\\\" data-semantic-parent=\\\"6\\\" data-semantic-role=\\\"subtraction\\\" data-semantic-type=\\\"operator\\\" form=\\\"prefix\\\">−</mo><mi data-semantic-=\\\"\\\" data-semantic-annotation=\\\"clearspeak:simple\\\" data-semantic-font=\\\"italic\\\" data-semantic-parent=\\\"6\\\" data-semantic-role=\\\"greekletter\\\" data-semantic-type=\\\"identifier\\\">ε</mi></mrow>$$ 5/4-\\\\varepsilon $$</annotation></semantics></math></mjx-assistive-mml></mjx-container> for the one-dimensional space-time white noise, which overcomes the order barrier one. Moreover, we allow the covariance operator of the noise to be noncommutative with the Dirichlet Laplacian, which weakens the common assumptions on the noise in the literature. Finally, some numerical experiments in different spatial dimensions are presented to support our theoretical findings. By means of the piecewise spectral approximation of the noise, a piecewise version of the fully discrete scheme is constructed to fulfill a long-time simulation.\",\"PeriodicalId\":2,\"journal\":{\"name\":\"ACS Applied Bio Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2024-02-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Bio Materials\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1002/num.23094\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, BIOMATERIALS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1002/num.23094","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0

摘要

本文针对加性噪声驱动的随机强阻尼波方程(SSDWE)提出了一种高效的全离散方案,并给出了其强意义上的误差估计。我们利用噪声的截断谱扩展得到近似方程,并证明了其正则性。然后,我们通过空间有限元法和时间指数梯形方案建立了近似方程的时空离散化。我们证明,与使用噪声的片断逼近和指数欧拉方案或隐式欧拉方案相比,这种组合能获得更高的时间强收敛阶次。特别是,对于一维时空白噪声,全离散方案的时间强收敛阶数达到了 5/4-ε$$ 5/4-\varepsilon$$,克服了阶数障碍一。此外,我们允许噪声的协方差算子与 Dirichlet Laplacian 非交换,这弱化了文献中对噪声的常见假设。最后,我们介绍了一些不同空间维度的数值实验,以支持我们的理论发现。通过对噪声的片断谱近似,我们构建了一个片断版的完全离散方案,以实现长时间模拟。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
On strong convergence of a fully discrete scheme for solving stochastic strongly damped wave equations
This article develops an efficient fully discrete scheme for a stochastic strongly damped wave equation (SSDWE) driven by an additive noise and presents its error estimates in the strong sense. We use the truncated spectral expansion of the noise to get an approximate equation and prove its regularity. Then we establish a spatio-temporal discretization of the approximate equation by a finite element method in space and an exponential trapezoidal scheme in time. We prove that the combination can derive higher strong convergence order in time than the use of the piecewise approximation of the noise and the exponential Euler scheme or the implicit Euler scheme in time. Particularly, the temporal strong convergence order of the fully discrete scheme reaches for the one-dimensional space-time white noise, which overcomes the order barrier one. Moreover, we allow the covariance operator of the noise to be noncommutative with the Dirichlet Laplacian, which weakens the common assumptions on the noise in the literature. Finally, some numerical experiments in different spatial dimensions are presented to support our theoretical findings. By means of the piecewise spectral approximation of the noise, a piecewise version of the fully discrete scheme is constructed to fulfill a long-time simulation.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACS Applied Bio Materials
ACS Applied Bio Materials Chemistry-Chemistry (all)
CiteScore
9.40
自引率
2.10%
发文量
464
期刊最新文献
A Systematic Review of Sleep Disturbance in Idiopathic Intracranial Hypertension. Advancing Patient Education in Idiopathic Intracranial Hypertension: The Promise of Large Language Models. Anti-Myelin-Associated Glycoprotein Neuropathy: Recent Developments. Approach to Managing the Initial Presentation of Multiple Sclerosis: A Worldwide Practice Survey. Association Between LACE+ Index Risk Category and 90-Day Mortality After Stroke.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1