紧急制动游戏:在密集行人群中进行机动的博弈论方法

IF 1.5 Q3 INSTRUMENTS & INSTRUMENTATION ROBOMECH Journal Pub Date : 2024-02-23 DOI:10.1186/s40648-023-00266-8
János Szőts, Zoltán Gyenes, Emese Gincsainé Szádeczky-Kardoss, Ladislau Bölöni, István Harmati
{"title":"紧急制动游戏:在密集行人群中进行机动的博弈论方法","authors":"János Szőts, Zoltán Gyenes, Emese Gincsainé Szádeczky-Kardoss, Ladislau Bölöni, István Harmati","doi":"10.1186/s40648-023-00266-8","DOIUrl":null,"url":null,"abstract":"We introduce an algorithm that maneuvers a vehicle through an area with randomly moving pedestrians. In non-critical situations, our strategy is to avoid pedestrians by steering, whereas dangerously moving pedestrians are avoided by braking, possibly coming to a complete stop. The distinction between non-critical and dangerous situations, as well as proof of safety, is based on a continuous optimization problem that we define. In this abstract problem, called Emergency Braking Game, one pedestrian is actively trying to collide with a continuously decelerating car. We show how to determine the outcome of the game based on the initial states of the car and the pedestrian. Using this information, our algorithm can initiate deceleration in the real scenario in time to avoid collision. The method’s safety is proven theoretically, and its efficiency is shown in simulations with randomly moving pedestrians.","PeriodicalId":37462,"journal":{"name":"ROBOMECH Journal","volume":"18 1","pages":""},"PeriodicalIF":1.5000,"publicationDate":"2024-02-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The Emergency Braking Game: a game theoretic approach for maneuvering in a dense crowd of pedestrians\",\"authors\":\"János Szőts, Zoltán Gyenes, Emese Gincsainé Szádeczky-Kardoss, Ladislau Bölöni, István Harmati\",\"doi\":\"10.1186/s40648-023-00266-8\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We introduce an algorithm that maneuvers a vehicle through an area with randomly moving pedestrians. In non-critical situations, our strategy is to avoid pedestrians by steering, whereas dangerously moving pedestrians are avoided by braking, possibly coming to a complete stop. The distinction between non-critical and dangerous situations, as well as proof of safety, is based on a continuous optimization problem that we define. In this abstract problem, called Emergency Braking Game, one pedestrian is actively trying to collide with a continuously decelerating car. We show how to determine the outcome of the game based on the initial states of the car and the pedestrian. Using this information, our algorithm can initiate deceleration in the real scenario in time to avoid collision. The method’s safety is proven theoretically, and its efficiency is shown in simulations with randomly moving pedestrians.\",\"PeriodicalId\":37462,\"journal\":{\"name\":\"ROBOMECH Journal\",\"volume\":\"18 1\",\"pages\":\"\"},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2024-02-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ROBOMECH Journal\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1186/s40648-023-00266-8\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"INSTRUMENTS & INSTRUMENTATION\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ROBOMECH Journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1186/s40648-023-00266-8","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"INSTRUMENTS & INSTRUMENTATION","Score":null,"Total":0}
引用次数: 0

摘要

我们引入了一种算法,该算法可操控车辆通过一个有随机移动行人的区域。在非关键情况下,我们的策略是通过转向避开行人,而在危险情况下,则通过制动避开行人,甚至完全停止。非关键情况和危险情况之间的区别以及安全性的证明都是基于我们定义的一个连续优化问题。在这个名为 "紧急制动博弈 "的抽象问题中,一名行人正积极试图与一辆持续减速的汽车相撞。我们展示了如何根据汽车和行人的初始状态来确定博弈结果。利用这些信息,我们的算法可以在真实场景中及时启动减速以避免碰撞。我们从理论上证明了该方法的安全性,并在随机移动行人的模拟中展示了该方法的效率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
The Emergency Braking Game: a game theoretic approach for maneuvering in a dense crowd of pedestrians
We introduce an algorithm that maneuvers a vehicle through an area with randomly moving pedestrians. In non-critical situations, our strategy is to avoid pedestrians by steering, whereas dangerously moving pedestrians are avoided by braking, possibly coming to a complete stop. The distinction between non-critical and dangerous situations, as well as proof of safety, is based on a continuous optimization problem that we define. In this abstract problem, called Emergency Braking Game, one pedestrian is actively trying to collide with a continuously decelerating car. We show how to determine the outcome of the game based on the initial states of the car and the pedestrian. Using this information, our algorithm can initiate deceleration in the real scenario in time to avoid collision. The method’s safety is proven theoretically, and its efficiency is shown in simulations with randomly moving pedestrians.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ROBOMECH Journal
ROBOMECH Journal Mathematics-Control and Optimization
CiteScore
3.20
自引率
7.10%
发文量
21
审稿时长
13 weeks
期刊介绍: ROBOMECH Journal focuses on advanced technologies and practical applications in the field of Robotics and Mechatronics. This field is driven by the steadily growing research, development and consumer demand for robots and systems. Advanced robots have been working in medical and hazardous environments, such as space and the deep sea as well as in the manufacturing environment. The scope of the journal includes but is not limited to: 1. Modeling and design 2. System integration 3. Actuators and sensors 4. Intelligent control 5. Artificial intelligence 6. Machine learning 7. Robotics 8. Manufacturing 9. Motion control 10. Vibration and noise control 11. Micro/nano devices and optoelectronics systems 12. Automotive systems 13. Applications for extreme and/or hazardous environments 14. Other applications
期刊最新文献
Computer vision-based visualization and quantification of body skeletal movements for investigation of traditional skills: the production of Kizumi winnowing baskets Measuring unit for synchronously collecting air dose rate and measurement position Length control of a McKibben pneumatic actuator using a dynamic quantizer Interactive driving of electrostatic film actuator by proximity motion of human body Development and flight-test verification of two-dimensional rotational low-airspeed sensor for small helicopters
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1