求解矩阵方程 A𝒱-𝒱‾B=C 的移位分割雅各比梯度迭代算法

Ahmed M. E. Bayoumi
{"title":"求解矩阵方程 A𝒱-𝒱‾B=C 的移位分割雅各比梯度迭代算法","authors":"Ahmed M. E. Bayoumi","doi":"10.1002/oca.3112","DOIUrl":null,"url":null,"abstract":"To improve the convergence of the gradient iterative (GI) algorithm and the Jacobi-gradient iterative (JGI) algorithm [Bayoumi, <i>Appl Math Inf Sci</i>, 2021], a shift-splitting Jacobi-gradient iterative (SSJGI) algorithm for solving the matrix equation <mjx-container aria-label=\"upper A script upper V minus script upper V overbar upper B equals upper C\" ctxtmenu_counter=\"1\" ctxtmenu_oldtabindex=\"1\" jax=\"CHTML\" role=\"application\" sre-explorer- style=\"font-size: 103%; position: relative;\" tabindex=\"0\"><mjx-math aria-hidden=\"true\"><mjx-mrow data-semantic-children=\"13,8\" data-semantic-content=\"7\" data-semantic- data-semantic-role=\"equality\" data-semantic-speech=\"upper A script upper V minus script upper V overbar upper B equals upper C\" data-semantic-type=\"relseq\"><mjx-mrow data-semantic-children=\"10,12\" data-semantic-content=\"2\" data-semantic- data-semantic-parent=\"14\" data-semantic-role=\"subtraction\" data-semantic-type=\"infixop\"><mjx-mrow data-semantic-annotation=\"clearspeak:simple;clearspeak:unit\" data-semantic-children=\"0,1\" data-semantic-content=\"9\" data-semantic- data-semantic-parent=\"13\" data-semantic-role=\"implicit\" data-semantic-type=\"infixop\"><mjx-mi data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"italic\" data-semantic- data-semantic-parent=\"10\" data-semantic-role=\"latinletter\" data-semantic-type=\"identifier\"><mjx-c></mjx-c></mjx-mi><mjx-mo data-semantic-added=\"true\" data-semantic- data-semantic-operator=\"infixop,⁢\" data-semantic-parent=\"10\" data-semantic-role=\"multiplication\" data-semantic-type=\"operator\" style=\"margin-left: 0.056em; margin-right: 0.056em;\"><mjx-c></mjx-c></mjx-mo><mjx-mi data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"script\" data-semantic- data-semantic-parent=\"10\" data-semantic-role=\"latinletter\" data-semantic-type=\"identifier\"><mjx-c></mjx-c></mjx-mi></mjx-mrow><mjx-mo data-semantic- data-semantic-operator=\"infixop,−\" data-semantic-parent=\"13\" data-semantic-role=\"subtraction\" data-semantic-type=\"operator\" rspace=\"4\" space=\"4\"><mjx-c></mjx-c></mjx-mo><mjx-mrow data-semantic-annotation=\"clearspeak:unit\" data-semantic-children=\"5,6\" data-semantic-content=\"11\" data-semantic- data-semantic-parent=\"13\" data-semantic-role=\"implicit\" data-semantic-type=\"infixop\"><mjx-mover data-semantic-children=\"3,4\" data-semantic- data-semantic-parent=\"12\" data-semantic-role=\"latinletter\" data-semantic-type=\"overscore\"><mjx-over style=\"padding-bottom: 0.2em; padding-left: 0.171em; margin-bottom: -0.385em;\"><mjx-mo data-semantic- data-semantic-parent=\"5\" data-semantic-role=\"overaccent\" data-semantic-type=\"punctuation\" size=\"s\"><mjx-stretchy-h style=\"width: 1.202em;\"><mjx-ext><mjx-c></mjx-c></mjx-ext></mjx-stretchy-h></mjx-mo></mjx-over><mjx-base><mjx-mi data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"script\" data-semantic- data-semantic-parent=\"5\" data-semantic-role=\"latinletter\" data-semantic-type=\"identifier\"><mjx-c></mjx-c></mjx-mi></mjx-base></mjx-mover><mjx-mo data-semantic-added=\"true\" data-semantic- data-semantic-operator=\"infixop,⁢\" data-semantic-parent=\"12\" data-semantic-role=\"multiplication\" data-semantic-type=\"operator\" style=\"margin-left: 0.056em; margin-right: 0.056em;\"><mjx-c></mjx-c></mjx-mo><mjx-mi data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"italic\" data-semantic- data-semantic-parent=\"12\" data-semantic-role=\"latinletter\" data-semantic-type=\"identifier\"><mjx-c></mjx-c></mjx-mi></mjx-mrow></mjx-mrow><mjx-mo data-semantic- data-semantic-operator=\"relseq,=\" data-semantic-parent=\"14\" data-semantic-role=\"equality\" data-semantic-type=\"relation\" rspace=\"5\" space=\"5\"><mjx-c></mjx-c></mjx-mo><mjx-mi data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"italic\" data-semantic- data-semantic-parent=\"14\" data-semantic-role=\"latinletter\" data-semantic-type=\"identifier\"><mjx-c></mjx-c></mjx-mi></mjx-mrow></mjx-math><mjx-assistive-mml aria-hidden=\"true\" display=\"inline\" unselectable=\"on\"><math altimg=\"/cms/asset/4de835db-dcf2-4eeb-acc4-9a5ccf422c4e/oca3112-math-0002.png\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mrow data-semantic-=\"\" data-semantic-children=\"13,8\" data-semantic-content=\"7\" data-semantic-role=\"equality\" data-semantic-speech=\"upper A script upper V minus script upper V overbar upper B equals upper C\" data-semantic-type=\"relseq\"><mrow data-semantic-=\"\" data-semantic-children=\"10,12\" data-semantic-content=\"2\" data-semantic-parent=\"14\" data-semantic-role=\"subtraction\" data-semantic-type=\"infixop\"><mrow data-semantic-=\"\" data-semantic-annotation=\"clearspeak:simple;clearspeak:unit\" data-semantic-children=\"0,1\" data-semantic-content=\"9\" data-semantic-parent=\"13\" data-semantic-role=\"implicit\" data-semantic-type=\"infixop\"><mi data-semantic-=\"\" data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"italic\" data-semantic-parent=\"10\" data-semantic-role=\"latinletter\" data-semantic-type=\"identifier\">A</mi><mo data-semantic-=\"\" data-semantic-added=\"true\" data-semantic-operator=\"infixop,⁢\" data-semantic-parent=\"10\" data-semantic-role=\"multiplication\" data-semantic-type=\"operator\">⁢</mo><mi data-semantic-=\"\" data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"script\" data-semantic-parent=\"10\" data-semantic-role=\"latinletter\" data-semantic-type=\"identifier\">𝒱</mi></mrow><mo data-semantic-=\"\" data-semantic-operator=\"infixop,−\" data-semantic-parent=\"13\" data-semantic-role=\"subtraction\" data-semantic-type=\"operator\">−</mo><mrow data-semantic-=\"\" data-semantic-annotation=\"clearspeak:unit\" data-semantic-children=\"5,6\" data-semantic-content=\"11\" data-semantic-parent=\"13\" data-semantic-role=\"implicit\" data-semantic-type=\"infixop\"><mover accent=\"false\" data-semantic-=\"\" data-semantic-children=\"3,4\" data-semantic-parent=\"12\" data-semantic-role=\"latinletter\" data-semantic-type=\"overscore\"><mi data-semantic-=\"\" data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"script\" data-semantic-parent=\"5\" data-semantic-role=\"latinletter\" data-semantic-type=\"identifier\">𝒱</mi><mo data-semantic-=\"\" data-semantic-parent=\"5\" data-semantic-role=\"overaccent\" data-semantic-type=\"punctuation\">‾</mo></mover><mo data-semantic-=\"\" data-semantic-added=\"true\" data-semantic-operator=\"infixop,⁢\" data-semantic-parent=\"12\" data-semantic-role=\"multiplication\" data-semantic-type=\"operator\">⁢</mo><mi data-semantic-=\"\" data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"italic\" data-semantic-parent=\"12\" data-semantic-role=\"latinletter\" data-semantic-type=\"identifier\">B</mi></mrow></mrow><mo data-semantic-=\"\" data-semantic-operator=\"relseq,=\" data-semantic-parent=\"14\" data-semantic-role=\"equality\" data-semantic-type=\"relation\">=</mo><mi data-semantic-=\"\" data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"italic\" data-semantic-parent=\"14\" data-semantic-role=\"latinletter\" data-semantic-type=\"identifier\">C</mi></mrow></math></mjx-assistive-mml></mjx-container> is presented in this paper, which is based on the splitting of the coefficient matrices. The proposed algorithm converges to the exact solution for any initial value with some conditions. To demonstrate the effectiveness of the SSJGI algorithm and to compare it to the GI algorithm and the JGI algorithm [Bayoumi, <i>Appl Math Inf Sci</i>, 2021], numerical examples are provided.","PeriodicalId":501055,"journal":{"name":"Optimal Control Applications and Methods","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-02-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A shift-splitting Jacobi-gradient iterative algorithm for solving the matrix equation A𝒱−𝒱‾B=C\",\"authors\":\"Ahmed M. E. Bayoumi\",\"doi\":\"10.1002/oca.3112\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"To improve the convergence of the gradient iterative (GI) algorithm and the Jacobi-gradient iterative (JGI) algorithm [Bayoumi, <i>Appl Math Inf Sci</i>, 2021], a shift-splitting Jacobi-gradient iterative (SSJGI) algorithm for solving the matrix equation <mjx-container aria-label=\\\"upper A script upper V minus script upper V overbar upper B equals upper C\\\" ctxtmenu_counter=\\\"1\\\" ctxtmenu_oldtabindex=\\\"1\\\" jax=\\\"CHTML\\\" role=\\\"application\\\" sre-explorer- style=\\\"font-size: 103%; position: relative;\\\" tabindex=\\\"0\\\"><mjx-math aria-hidden=\\\"true\\\"><mjx-mrow data-semantic-children=\\\"13,8\\\" data-semantic-content=\\\"7\\\" data-semantic- data-semantic-role=\\\"equality\\\" data-semantic-speech=\\\"upper A script upper V minus script upper V overbar upper B equals upper C\\\" data-semantic-type=\\\"relseq\\\"><mjx-mrow data-semantic-children=\\\"10,12\\\" data-semantic-content=\\\"2\\\" data-semantic- data-semantic-parent=\\\"14\\\" data-semantic-role=\\\"subtraction\\\" data-semantic-type=\\\"infixop\\\"><mjx-mrow data-semantic-annotation=\\\"clearspeak:simple;clearspeak:unit\\\" data-semantic-children=\\\"0,1\\\" data-semantic-content=\\\"9\\\" data-semantic- data-semantic-parent=\\\"13\\\" data-semantic-role=\\\"implicit\\\" data-semantic-type=\\\"infixop\\\"><mjx-mi data-semantic-annotation=\\\"clearspeak:simple\\\" data-semantic-font=\\\"italic\\\" data-semantic- data-semantic-parent=\\\"10\\\" data-semantic-role=\\\"latinletter\\\" data-semantic-type=\\\"identifier\\\"><mjx-c></mjx-c></mjx-mi><mjx-mo data-semantic-added=\\\"true\\\" data-semantic- data-semantic-operator=\\\"infixop,⁢\\\" data-semantic-parent=\\\"10\\\" data-semantic-role=\\\"multiplication\\\" data-semantic-type=\\\"operator\\\" style=\\\"margin-left: 0.056em; margin-right: 0.056em;\\\"><mjx-c></mjx-c></mjx-mo><mjx-mi data-semantic-annotation=\\\"clearspeak:simple\\\" data-semantic-font=\\\"script\\\" data-semantic- data-semantic-parent=\\\"10\\\" data-semantic-role=\\\"latinletter\\\" data-semantic-type=\\\"identifier\\\"><mjx-c></mjx-c></mjx-mi></mjx-mrow><mjx-mo data-semantic- data-semantic-operator=\\\"infixop,−\\\" data-semantic-parent=\\\"13\\\" data-semantic-role=\\\"subtraction\\\" data-semantic-type=\\\"operator\\\" rspace=\\\"4\\\" space=\\\"4\\\"><mjx-c></mjx-c></mjx-mo><mjx-mrow data-semantic-annotation=\\\"clearspeak:unit\\\" data-semantic-children=\\\"5,6\\\" data-semantic-content=\\\"11\\\" data-semantic- data-semantic-parent=\\\"13\\\" data-semantic-role=\\\"implicit\\\" data-semantic-type=\\\"infixop\\\"><mjx-mover data-semantic-children=\\\"3,4\\\" data-semantic- data-semantic-parent=\\\"12\\\" data-semantic-role=\\\"latinletter\\\" data-semantic-type=\\\"overscore\\\"><mjx-over style=\\\"padding-bottom: 0.2em; padding-left: 0.171em; margin-bottom: -0.385em;\\\"><mjx-mo data-semantic- data-semantic-parent=\\\"5\\\" data-semantic-role=\\\"overaccent\\\" data-semantic-type=\\\"punctuation\\\" size=\\\"s\\\"><mjx-stretchy-h style=\\\"width: 1.202em;\\\"><mjx-ext><mjx-c></mjx-c></mjx-ext></mjx-stretchy-h></mjx-mo></mjx-over><mjx-base><mjx-mi data-semantic-annotation=\\\"clearspeak:simple\\\" data-semantic-font=\\\"script\\\" data-semantic- data-semantic-parent=\\\"5\\\" data-semantic-role=\\\"latinletter\\\" data-semantic-type=\\\"identifier\\\"><mjx-c></mjx-c></mjx-mi></mjx-base></mjx-mover><mjx-mo data-semantic-added=\\\"true\\\" data-semantic- data-semantic-operator=\\\"infixop,⁢\\\" data-semantic-parent=\\\"12\\\" data-semantic-role=\\\"multiplication\\\" data-semantic-type=\\\"operator\\\" style=\\\"margin-left: 0.056em; margin-right: 0.056em;\\\"><mjx-c></mjx-c></mjx-mo><mjx-mi data-semantic-annotation=\\\"clearspeak:simple\\\" data-semantic-font=\\\"italic\\\" data-semantic- data-semantic-parent=\\\"12\\\" data-semantic-role=\\\"latinletter\\\" data-semantic-type=\\\"identifier\\\"><mjx-c></mjx-c></mjx-mi></mjx-mrow></mjx-mrow><mjx-mo data-semantic- data-semantic-operator=\\\"relseq,=\\\" data-semantic-parent=\\\"14\\\" data-semantic-role=\\\"equality\\\" data-semantic-type=\\\"relation\\\" rspace=\\\"5\\\" space=\\\"5\\\"><mjx-c></mjx-c></mjx-mo><mjx-mi data-semantic-annotation=\\\"clearspeak:simple\\\" data-semantic-font=\\\"italic\\\" data-semantic- data-semantic-parent=\\\"14\\\" data-semantic-role=\\\"latinletter\\\" data-semantic-type=\\\"identifier\\\"><mjx-c></mjx-c></mjx-mi></mjx-mrow></mjx-math><mjx-assistive-mml aria-hidden=\\\"true\\\" display=\\\"inline\\\" unselectable=\\\"on\\\"><math altimg=\\\"/cms/asset/4de835db-dcf2-4eeb-acc4-9a5ccf422c4e/oca3112-math-0002.png\\\" xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mrow data-semantic-=\\\"\\\" data-semantic-children=\\\"13,8\\\" data-semantic-content=\\\"7\\\" data-semantic-role=\\\"equality\\\" data-semantic-speech=\\\"upper A script upper V minus script upper V overbar upper B equals upper C\\\" data-semantic-type=\\\"relseq\\\"><mrow data-semantic-=\\\"\\\" data-semantic-children=\\\"10,12\\\" data-semantic-content=\\\"2\\\" data-semantic-parent=\\\"14\\\" data-semantic-role=\\\"subtraction\\\" data-semantic-type=\\\"infixop\\\"><mrow data-semantic-=\\\"\\\" data-semantic-annotation=\\\"clearspeak:simple;clearspeak:unit\\\" data-semantic-children=\\\"0,1\\\" data-semantic-content=\\\"9\\\" data-semantic-parent=\\\"13\\\" data-semantic-role=\\\"implicit\\\" data-semantic-type=\\\"infixop\\\"><mi data-semantic-=\\\"\\\" data-semantic-annotation=\\\"clearspeak:simple\\\" data-semantic-font=\\\"italic\\\" data-semantic-parent=\\\"10\\\" data-semantic-role=\\\"latinletter\\\" data-semantic-type=\\\"identifier\\\">A</mi><mo data-semantic-=\\\"\\\" data-semantic-added=\\\"true\\\" data-semantic-operator=\\\"infixop,⁢\\\" data-semantic-parent=\\\"10\\\" data-semantic-role=\\\"multiplication\\\" data-semantic-type=\\\"operator\\\">⁢</mo><mi data-semantic-=\\\"\\\" data-semantic-annotation=\\\"clearspeak:simple\\\" data-semantic-font=\\\"script\\\" data-semantic-parent=\\\"10\\\" data-semantic-role=\\\"latinletter\\\" data-semantic-type=\\\"identifier\\\">𝒱</mi></mrow><mo data-semantic-=\\\"\\\" data-semantic-operator=\\\"infixop,−\\\" data-semantic-parent=\\\"13\\\" data-semantic-role=\\\"subtraction\\\" data-semantic-type=\\\"operator\\\">−</mo><mrow data-semantic-=\\\"\\\" data-semantic-annotation=\\\"clearspeak:unit\\\" data-semantic-children=\\\"5,6\\\" data-semantic-content=\\\"11\\\" data-semantic-parent=\\\"13\\\" data-semantic-role=\\\"implicit\\\" data-semantic-type=\\\"infixop\\\"><mover accent=\\\"false\\\" data-semantic-=\\\"\\\" data-semantic-children=\\\"3,4\\\" data-semantic-parent=\\\"12\\\" data-semantic-role=\\\"latinletter\\\" data-semantic-type=\\\"overscore\\\"><mi data-semantic-=\\\"\\\" data-semantic-annotation=\\\"clearspeak:simple\\\" data-semantic-font=\\\"script\\\" data-semantic-parent=\\\"5\\\" data-semantic-role=\\\"latinletter\\\" data-semantic-type=\\\"identifier\\\">𝒱</mi><mo data-semantic-=\\\"\\\" data-semantic-parent=\\\"5\\\" data-semantic-role=\\\"overaccent\\\" data-semantic-type=\\\"punctuation\\\">‾</mo></mover><mo data-semantic-=\\\"\\\" data-semantic-added=\\\"true\\\" data-semantic-operator=\\\"infixop,⁢\\\" data-semantic-parent=\\\"12\\\" data-semantic-role=\\\"multiplication\\\" data-semantic-type=\\\"operator\\\">⁢</mo><mi data-semantic-=\\\"\\\" data-semantic-annotation=\\\"clearspeak:simple\\\" data-semantic-font=\\\"italic\\\" data-semantic-parent=\\\"12\\\" data-semantic-role=\\\"latinletter\\\" data-semantic-type=\\\"identifier\\\">B</mi></mrow></mrow><mo data-semantic-=\\\"\\\" data-semantic-operator=\\\"relseq,=\\\" data-semantic-parent=\\\"14\\\" data-semantic-role=\\\"equality\\\" data-semantic-type=\\\"relation\\\">=</mo><mi data-semantic-=\\\"\\\" data-semantic-annotation=\\\"clearspeak:simple\\\" data-semantic-font=\\\"italic\\\" data-semantic-parent=\\\"14\\\" data-semantic-role=\\\"latinletter\\\" data-semantic-type=\\\"identifier\\\">C</mi></mrow></math></mjx-assistive-mml></mjx-container> is presented in this paper, which is based on the splitting of the coefficient matrices. The proposed algorithm converges to the exact solution for any initial value with some conditions. To demonstrate the effectiveness of the SSJGI algorithm and to compare it to the GI algorithm and the JGI algorithm [Bayoumi, <i>Appl Math Inf Sci</i>, 2021], numerical examples are provided.\",\"PeriodicalId\":501055,\"journal\":{\"name\":\"Optimal Control Applications and Methods\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-02-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Optimal Control Applications and Methods\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1002/oca.3112\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Optimal Control Applications and Methods","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1002/oca.3112","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

为了提高梯度迭代(GI)算法和雅各比梯度迭代(JGI)算法[Bayoumi,Appl Math Inf Sci,2021]的收敛性,本文提出了一种基于系数矩阵拆分的求解矩阵方程 A𝒱-𝒱‾B=C的移位拆分雅各比梯度迭代(SSJGI)算法。所提出的算法在某些条件下对任何初始值都能收敛到精确解。为了证明 SSJGI 算法的有效性,并将其与 GI 算法和 JGI 算法 [Bayoumi, Appl Math Inf Sci, 2021] 进行比较,本文提供了数值示例。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A shift-splitting Jacobi-gradient iterative algorithm for solving the matrix equation A𝒱−𝒱‾B=C
To improve the convergence of the gradient iterative (GI) algorithm and the Jacobi-gradient iterative (JGI) algorithm [Bayoumi, Appl Math Inf Sci, 2021], a shift-splitting Jacobi-gradient iterative (SSJGI) algorithm for solving the matrix equation is presented in this paper, which is based on the splitting of the coefficient matrices. The proposed algorithm converges to the exact solution for any initial value with some conditions. To demonstrate the effectiveness of the SSJGI algorithm and to compare it to the GI algorithm and the JGI algorithm [Bayoumi, Appl Math Inf Sci, 2021], numerical examples are provided.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
An optimal demand side management for microgrid cost minimization considering renewables Output feedback control of anti‐linear systems using adaptive dynamic programming Reachable set estimation of delayed Markovian jump neural networks based on an augmented zero equality approach Adaptive neural network dynamic surface optimal saturation control for single‐phase grid‐connected photovoltaic systems Intelligent integration of ANN and H‐infinity control for optimal enhanced performance of a wind generation unit linked to a power system
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1