用于 ODE 模型参数化和稳定性分析的端到端统计模型检查

IF 0.7 4区 计算机科学 Q4 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS ACM Transactions on Modeling and Computer Simulation Pub Date : 2024-02-24 DOI:10.1145/3649438
David Julien, Gilles Ardourel, Guillaume Cantin, Benoît Delahaye
{"title":"用于 ODE 模型参数化和稳定性分析的端到端统计模型检查","authors":"David Julien, Gilles Ardourel, Guillaume Cantin, Benoît Delahaye","doi":"10.1145/3649438","DOIUrl":null,"url":null,"abstract":"<p>We propose a simulation-based technique for the parameterization and the stability analysis of parametric Ordinary Differential Equations. This technique is an adaptation of Statistical Model Checking, often used to verify the validity of biological models, to the setting of Ordinary Differential Equations systems. The aim of our technique is to estimate the probability of satisfying a given property under the variability of the parameter or initial condition of the ODE, with any metrics of choice. To do so, we discretize the values space and use statistical model checking to evaluate each individual value w.r.t. provided data. Contrary to other existing methods, we provide statistical guarantees regarding our results that take into account the unavoidable approximation errors introduced through the numerical integration of the ODE system performed while simulating. In order to show the potential of our technique, we present its application to two case studies taken from the literature, one relative to the growth of a jellyfish population, and the other concerning a well-known oscillator model.</p>","PeriodicalId":50943,"journal":{"name":"ACM Transactions on Modeling and Computer Simulation","volume":null,"pages":null},"PeriodicalIF":0.7000,"publicationDate":"2024-02-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"End-to-End Statistical Model Checking for Parameterization and Stability Analysis of ODE Models\",\"authors\":\"David Julien, Gilles Ardourel, Guillaume Cantin, Benoît Delahaye\",\"doi\":\"10.1145/3649438\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>We propose a simulation-based technique for the parameterization and the stability analysis of parametric Ordinary Differential Equations. This technique is an adaptation of Statistical Model Checking, often used to verify the validity of biological models, to the setting of Ordinary Differential Equations systems. The aim of our technique is to estimate the probability of satisfying a given property under the variability of the parameter or initial condition of the ODE, with any metrics of choice. To do so, we discretize the values space and use statistical model checking to evaluate each individual value w.r.t. provided data. Contrary to other existing methods, we provide statistical guarantees regarding our results that take into account the unavoidable approximation errors introduced through the numerical integration of the ODE system performed while simulating. In order to show the potential of our technique, we present its application to two case studies taken from the literature, one relative to the growth of a jellyfish population, and the other concerning a well-known oscillator model.</p>\",\"PeriodicalId\":50943,\"journal\":{\"name\":\"ACM Transactions on Modeling and Computer Simulation\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2024-02-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACM Transactions on Modeling and Computer Simulation\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1145/3649438\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM Transactions on Modeling and Computer Simulation","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1145/3649438","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

摘要

我们提出了一种基于模拟的参数化技术和参数常微分方程稳定性分析技术。这种技术是统计模型检查(Statistical Model Checking)的一种改良,通常用于验证生物模型的有效性,也适用于常微分方程系统。我们的技术旨在估算在常微分方程参数或初始条件变化的情况下,满足给定属性的概率。为此,我们对数值空间进行离散化处理,并使用统计模型检查来根据所提供的数据评估每个单独的数值。与其他现有方法不同的是,我们对结果提供统计保证,其中考虑到了模拟时通过对 ODE 系统进行数值积分而引入的不可避免的近似误差。为了展示我们技术的潜力,我们将其应用于文献中的两个案例研究,一个与水母种群的增长有关,另一个与著名的振荡器模型有关。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
End-to-End Statistical Model Checking for Parameterization and Stability Analysis of ODE Models

We propose a simulation-based technique for the parameterization and the stability analysis of parametric Ordinary Differential Equations. This technique is an adaptation of Statistical Model Checking, often used to verify the validity of biological models, to the setting of Ordinary Differential Equations systems. The aim of our technique is to estimate the probability of satisfying a given property under the variability of the parameter or initial condition of the ODE, with any metrics of choice. To do so, we discretize the values space and use statistical model checking to evaluate each individual value w.r.t. provided data. Contrary to other existing methods, we provide statistical guarantees regarding our results that take into account the unavoidable approximation errors introduced through the numerical integration of the ODE system performed while simulating. In order to show the potential of our technique, we present its application to two case studies taken from the literature, one relative to the growth of a jellyfish population, and the other concerning a well-known oscillator model.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACM Transactions on Modeling and Computer Simulation
ACM Transactions on Modeling and Computer Simulation 工程技术-计算机:跨学科应用
CiteScore
2.50
自引率
22.20%
发文量
29
审稿时长
>12 weeks
期刊介绍: The ACM Transactions on Modeling and Computer Simulation (TOMACS) provides a single archival source for the publication of high-quality research and developmental results referring to all phases of the modeling and simulation life cycle. The subjects of emphasis are discrete event simulation, combined discrete and continuous simulation, as well as Monte Carlo methods. The use of simulation techniques is pervasive, extending to virtually all the sciences. TOMACS serves to enhance the understanding, improve the practice, and increase the utilization of computer simulation. Submissions should contribute to the realization of these objectives, and papers treating applications should stress their contributions vis-á-vis these objectives.
期刊最新文献
Reproducibility Report for the Paper "Performance Evaluation of Spintronic-Based Spiking Neural Networks Using Parallel Discrete-Event Simulation" Data Farming the Parameters of Simulation-Optimization Solvers Modeling of biogas production from hydrothermal carbonization products in a continuous anaerobic digester. Optimized Real-Time Stochastic Model of Power Electronic Converters based on FPGA Virtual Time III, Part 3: Throttling and Message Cancellation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1