{"title":"部分天然裂缝储层在溶液气驱一次采收和注气过程中的模拟和性能预测","authors":"Fuad H. Qasem, Ibrahim Sami Nashawi","doi":"10.1007/s13202-024-01764-0","DOIUrl":null,"url":null,"abstract":"<p>The study presented in this paper has multiple objectives. First, a simulation model for partially naturally fractured reservoirs under solution gas drive is developed. The model considers the major key parameters controlling fluid flow in the reservoir, including fracture intensity and distribution, instantaneous gas/oil segregation due to vertical capillary continuity, gas/oil gravity drainage, and reinfiltration of the drained oil to the lower matrix. Once the model is well-established, it is used to study the reservoir performance under two recovery processes: primary depletion and gas injection. A detailed investigation of the sensitivity of the ultimate oil recovery to the fracture intensity, oil production rates, and gas injection rates is performed. The findings of this study indicate that the ultimate oil recovery of low-fracture intensity reservoirs subjected to the depletion drive process is insensitive to production rates. However, for moderate- to high-fracture intensity reservoirs and low production rates, the recovery increases with increasing fracture intensity. Conversely, for moderate- to high-fracture intensity reservoirs and high production rates, the recovery is not significantly affected. For the gas injection mechanism, it is found that the ultimate oil recovery is a function of both the fracture intensity and gas injection rate. Furthermore, three fracture intensity ranges are identified: low, medium, and high. For the low- and high-fracture intensity ranges, the recovery increases with increasing gas injection rates and fracture intensity. However, for the medium fracture intensity ranges, the recovery behaves differently. It increases at low gas injection rates and decreases at high injection rates as the fracture intensity increases. New equations relating the cumulative oil production to the production rates, gas injection rates, and fracture intensity are also presented.</p>","PeriodicalId":16723,"journal":{"name":"Journal of Petroleum Exploration and Production Technology","volume":"25 1","pages":""},"PeriodicalIF":2.4000,"publicationDate":"2024-02-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Simulation and performance prediction of partially naturally fractured reservoirs under solution gas drive primary recovery and gas injection processes\",\"authors\":\"Fuad H. Qasem, Ibrahim Sami Nashawi\",\"doi\":\"10.1007/s13202-024-01764-0\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The study presented in this paper has multiple objectives. First, a simulation model for partially naturally fractured reservoirs under solution gas drive is developed. The model considers the major key parameters controlling fluid flow in the reservoir, including fracture intensity and distribution, instantaneous gas/oil segregation due to vertical capillary continuity, gas/oil gravity drainage, and reinfiltration of the drained oil to the lower matrix. Once the model is well-established, it is used to study the reservoir performance under two recovery processes: primary depletion and gas injection. A detailed investigation of the sensitivity of the ultimate oil recovery to the fracture intensity, oil production rates, and gas injection rates is performed. The findings of this study indicate that the ultimate oil recovery of low-fracture intensity reservoirs subjected to the depletion drive process is insensitive to production rates. However, for moderate- to high-fracture intensity reservoirs and low production rates, the recovery increases with increasing fracture intensity. Conversely, for moderate- to high-fracture intensity reservoirs and high production rates, the recovery is not significantly affected. For the gas injection mechanism, it is found that the ultimate oil recovery is a function of both the fracture intensity and gas injection rate. Furthermore, three fracture intensity ranges are identified: low, medium, and high. For the low- and high-fracture intensity ranges, the recovery increases with increasing gas injection rates and fracture intensity. However, for the medium fracture intensity ranges, the recovery behaves differently. It increases at low gas injection rates and decreases at high injection rates as the fracture intensity increases. New equations relating the cumulative oil production to the production rates, gas injection rates, and fracture intensity are also presented.</p>\",\"PeriodicalId\":16723,\"journal\":{\"name\":\"Journal of Petroleum Exploration and Production Technology\",\"volume\":\"25 1\",\"pages\":\"\"},\"PeriodicalIF\":2.4000,\"publicationDate\":\"2024-02-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Petroleum Exploration and Production Technology\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1007/s13202-024-01764-0\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENERGY & FUELS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Petroleum Exploration and Production Technology","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s13202-024-01764-0","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
Simulation and performance prediction of partially naturally fractured reservoirs under solution gas drive primary recovery and gas injection processes
The study presented in this paper has multiple objectives. First, a simulation model for partially naturally fractured reservoirs under solution gas drive is developed. The model considers the major key parameters controlling fluid flow in the reservoir, including fracture intensity and distribution, instantaneous gas/oil segregation due to vertical capillary continuity, gas/oil gravity drainage, and reinfiltration of the drained oil to the lower matrix. Once the model is well-established, it is used to study the reservoir performance under two recovery processes: primary depletion and gas injection. A detailed investigation of the sensitivity of the ultimate oil recovery to the fracture intensity, oil production rates, and gas injection rates is performed. The findings of this study indicate that the ultimate oil recovery of low-fracture intensity reservoirs subjected to the depletion drive process is insensitive to production rates. However, for moderate- to high-fracture intensity reservoirs and low production rates, the recovery increases with increasing fracture intensity. Conversely, for moderate- to high-fracture intensity reservoirs and high production rates, the recovery is not significantly affected. For the gas injection mechanism, it is found that the ultimate oil recovery is a function of both the fracture intensity and gas injection rate. Furthermore, three fracture intensity ranges are identified: low, medium, and high. For the low- and high-fracture intensity ranges, the recovery increases with increasing gas injection rates and fracture intensity. However, for the medium fracture intensity ranges, the recovery behaves differently. It increases at low gas injection rates and decreases at high injection rates as the fracture intensity increases. New equations relating the cumulative oil production to the production rates, gas injection rates, and fracture intensity are also presented.
期刊介绍:
The Journal of Petroleum Exploration and Production Technology is an international open access journal that publishes original and review articles as well as book reviews on leading edge studies in the field of petroleum engineering, petroleum geology and exploration geophysics and the implementation of related technologies to the development and management of oil and gas reservoirs from their discovery through their entire production cycle.
Focusing on:
Reservoir characterization and modeling
Unconventional oil and gas reservoirs
Geophysics: Acquisition and near surface
Geophysics Modeling and Imaging
Geophysics: Interpretation
Geophysics: Processing
Production Engineering
Formation Evaluation
Reservoir Management
Petroleum Geology
Enhanced Recovery
Geomechanics
Drilling
Completions
The Journal of Petroleum Exploration and Production Technology is committed to upholding the integrity of the scientific record. As a member of the Committee on Publication Ethics (COPE) the journal will follow the COPE guidelines on how to deal with potential acts of misconduct. Authors should refrain from misrepresenting research results which could damage the trust in the journal and ultimately the entire scientific endeavor. Maintaining integrity of the research and its presentation can be achieved by following the rules of good scientific practice as detailed here: https://www.springer.com/us/editorial-policies