{"title":"利用哨兵-2 号卫星和空中客车 Vision-1 号卫星的数据融合进行基于随机森林和人工神经网络的海啸森林分类:巴基斯坦 Garhi Chandan 案例研究","authors":"Shabnam Mateen, Narissara Nuthammachot, Kuaanan Techato","doi":"10.1515/geo-2022-0595","DOIUrl":null,"url":null,"abstract":"This article proposes random forest algorithm (RFA), multi-layer perception (MLP) artificial neural network (ANN), and support vector machine (SVM) method for classifying the fused data of Sentinel-2, Landsat-8, and Airbus Vision-1 satellites for the years 2016 and 2023. The first variant of fusion is performed for Sentinel-2 and Landsat-8 data to sharpen it to 10 m spatial resolution, while in the second case, Sentinel-2 and Airbus Vision-1 data are fused together to achieve a spatial resolution of 3.48 m. MLP-ANN, SVM, and RFA methods are applied to the sharpened dataset for the years 2023 and 2016 having spatial resolutions of 3.48 and 10 m, respectively, and a detailed comparative analysis is performed. Google earth engine is utilized for ground data validation of the classified samples. An enhanced convergence time of 100 iterations was achieved using MLP-ANN for the classification of the dataset at 3.48 m spatial resolution, while the same method took 300 iterations with the dataset at 10 m spatial resolution to achieve a minimum limit Kappa hat score of 0.85. With 10 m spatial resolution, the MLP-ANN achieved an overall accuracy of 96.6% and a Kappa hat score of 0.94, while at 3.48 m spatial resolution, the aforementioned scores are enhanced to 98.5% and 0.97, respectively. Similarly, with 10 m spatial resolution, the RFA achieved an overall accuracy of 92.6% and a Kappa hat score of 0.88, while at 3.48 m spatial resolution, the abovementioned scores are enhanced to 96.5 and 0.95% respectively. In view of the forgoing, the MLP-ANN showed better performance as compared to the RFA method.","PeriodicalId":48712,"journal":{"name":"Open Geosciences","volume":"6 1","pages":""},"PeriodicalIF":1.7000,"publicationDate":"2024-02-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Random forest and artificial neural network-based tsunami forests classification using data fusion of Sentinel-2 and Airbus Vision-1 satellites: A case study of Garhi Chandan, Pakistan\",\"authors\":\"Shabnam Mateen, Narissara Nuthammachot, Kuaanan Techato\",\"doi\":\"10.1515/geo-2022-0595\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This article proposes random forest algorithm (RFA), multi-layer perception (MLP) artificial neural network (ANN), and support vector machine (SVM) method for classifying the fused data of Sentinel-2, Landsat-8, and Airbus Vision-1 satellites for the years 2016 and 2023. The first variant of fusion is performed for Sentinel-2 and Landsat-8 data to sharpen it to 10 m spatial resolution, while in the second case, Sentinel-2 and Airbus Vision-1 data are fused together to achieve a spatial resolution of 3.48 m. MLP-ANN, SVM, and RFA methods are applied to the sharpened dataset for the years 2023 and 2016 having spatial resolutions of 3.48 and 10 m, respectively, and a detailed comparative analysis is performed. Google earth engine is utilized for ground data validation of the classified samples. An enhanced convergence time of 100 iterations was achieved using MLP-ANN for the classification of the dataset at 3.48 m spatial resolution, while the same method took 300 iterations with the dataset at 10 m spatial resolution to achieve a minimum limit Kappa hat score of 0.85. With 10 m spatial resolution, the MLP-ANN achieved an overall accuracy of 96.6% and a Kappa hat score of 0.94, while at 3.48 m spatial resolution, the aforementioned scores are enhanced to 98.5% and 0.97, respectively. Similarly, with 10 m spatial resolution, the RFA achieved an overall accuracy of 92.6% and a Kappa hat score of 0.88, while at 3.48 m spatial resolution, the abovementioned scores are enhanced to 96.5 and 0.95% respectively. In view of the forgoing, the MLP-ANN showed better performance as compared to the RFA method.\",\"PeriodicalId\":48712,\"journal\":{\"name\":\"Open Geosciences\",\"volume\":\"6 1\",\"pages\":\"\"},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2024-02-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Open Geosciences\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://doi.org/10.1515/geo-2022-0595\",\"RegionNum\":4,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"GEOSCIENCES, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Open Geosciences","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1515/geo-2022-0595","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"GEOSCIENCES, MULTIDISCIPLINARY","Score":null,"Total":0}
Random forest and artificial neural network-based tsunami forests classification using data fusion of Sentinel-2 and Airbus Vision-1 satellites: A case study of Garhi Chandan, Pakistan
This article proposes random forest algorithm (RFA), multi-layer perception (MLP) artificial neural network (ANN), and support vector machine (SVM) method for classifying the fused data of Sentinel-2, Landsat-8, and Airbus Vision-1 satellites for the years 2016 and 2023. The first variant of fusion is performed for Sentinel-2 and Landsat-8 data to sharpen it to 10 m spatial resolution, while in the second case, Sentinel-2 and Airbus Vision-1 data are fused together to achieve a spatial resolution of 3.48 m. MLP-ANN, SVM, and RFA methods are applied to the sharpened dataset for the years 2023 and 2016 having spatial resolutions of 3.48 and 10 m, respectively, and a detailed comparative analysis is performed. Google earth engine is utilized for ground data validation of the classified samples. An enhanced convergence time of 100 iterations was achieved using MLP-ANN for the classification of the dataset at 3.48 m spatial resolution, while the same method took 300 iterations with the dataset at 10 m spatial resolution to achieve a minimum limit Kappa hat score of 0.85. With 10 m spatial resolution, the MLP-ANN achieved an overall accuracy of 96.6% and a Kappa hat score of 0.94, while at 3.48 m spatial resolution, the aforementioned scores are enhanced to 98.5% and 0.97, respectively. Similarly, with 10 m spatial resolution, the RFA achieved an overall accuracy of 92.6% and a Kappa hat score of 0.88, while at 3.48 m spatial resolution, the abovementioned scores are enhanced to 96.5 and 0.95% respectively. In view of the forgoing, the MLP-ANN showed better performance as compared to the RFA method.
期刊介绍:
Open Geosciences (formerly Central European Journal of Geosciences - CEJG) is an open access, peer-reviewed journal publishing original research results from all fields of Earth Sciences such as: Atmospheric Sciences, Geology, Geophysics, Geography, Oceanography and Hydrology, Glaciology, Speleology, Volcanology, Soil Science, Palaeoecology, Geotourism, Geoinformatics, Geostatistics.