André Cirne;Patrícia R. Sousa;João S. Resende;Luís Antunes
{"title":"确保物联网身份的硬件安全","authors":"André Cirne;Patrícia R. Sousa;João S. Resende;Luís Antunes","doi":"10.1109/COMST.2024.3355168","DOIUrl":null,"url":null,"abstract":"With the proliferation of Internet of Things (IoT) devices, there is an increasing need to prioritize their security, especially in the context of identity and authentication mechanisms. However, IoT devices have unique limitations in terms of computational capabilities and susceptibility to hardware attacks, which pose significant challenges to establishing strong identity and authentication systems. Paradoxically, the very hardware constraints responsible for these challenges can also offer potential solutions. By incorporating hardware-based identity implementations, it is possible to overcome computational and energy limitations, while bolstering resistance against both hardware and software attacks. This research addresses these challenges by investigating the vulnerabilities and obstacles faced by identity and authentication systems in the IoT context, while also exploring potential technologies to address these issues. Each identified technology underwent meticulous investigation, considering known security attacks, implemented countermeasures, and an assessment of their pros and cons. Furthermore, an extensive literature survey was conducted to identify instances where these technologies have effectively supported device identity. The research also includes a demonstration that evaluates the effectiveness of hardware trust anchors in mitigating various attacks on IoT identity. This empirical evaluation provides valuable insights into the challenges developers encounter when implementing hardware-based identity solutions. Moreover, it underscores the substantial value of these solutions in terms of mitigating attacks and developing robust identity frameworks. By thoroughly examining vulnerabilities, exploring technologies, and conducting empirical evaluations, this research contributes to understanding and promoting the adoption of hardware-based identity and authentication systems in secure IoT environments. The findings emphasize the challenges faced by developers and highlight the significance of hardware trust anchors in enhancing security and facilitating effective identity solutions.","PeriodicalId":55029,"journal":{"name":"IEEE Communications Surveys and Tutorials","volume":"26 2","pages":"1041-1079"},"PeriodicalIF":34.4000,"publicationDate":"2024-01-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Hardware Security for Internet of Things Identity Assurance\",\"authors\":\"André Cirne;Patrícia R. Sousa;João S. Resende;Luís Antunes\",\"doi\":\"10.1109/COMST.2024.3355168\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"With the proliferation of Internet of Things (IoT) devices, there is an increasing need to prioritize their security, especially in the context of identity and authentication mechanisms. However, IoT devices have unique limitations in terms of computational capabilities and susceptibility to hardware attacks, which pose significant challenges to establishing strong identity and authentication systems. Paradoxically, the very hardware constraints responsible for these challenges can also offer potential solutions. By incorporating hardware-based identity implementations, it is possible to overcome computational and energy limitations, while bolstering resistance against both hardware and software attacks. This research addresses these challenges by investigating the vulnerabilities and obstacles faced by identity and authentication systems in the IoT context, while also exploring potential technologies to address these issues. Each identified technology underwent meticulous investigation, considering known security attacks, implemented countermeasures, and an assessment of their pros and cons. Furthermore, an extensive literature survey was conducted to identify instances where these technologies have effectively supported device identity. The research also includes a demonstration that evaluates the effectiveness of hardware trust anchors in mitigating various attacks on IoT identity. This empirical evaluation provides valuable insights into the challenges developers encounter when implementing hardware-based identity solutions. Moreover, it underscores the substantial value of these solutions in terms of mitigating attacks and developing robust identity frameworks. By thoroughly examining vulnerabilities, exploring technologies, and conducting empirical evaluations, this research contributes to understanding and promoting the adoption of hardware-based identity and authentication systems in secure IoT environments. The findings emphasize the challenges faced by developers and highlight the significance of hardware trust anchors in enhancing security and facilitating effective identity solutions.\",\"PeriodicalId\":55029,\"journal\":{\"name\":\"IEEE Communications Surveys and Tutorials\",\"volume\":\"26 2\",\"pages\":\"1041-1079\"},\"PeriodicalIF\":34.4000,\"publicationDate\":\"2024-01-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Communications Surveys and Tutorials\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10402015/\",\"RegionNum\":1,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Communications Surveys and Tutorials","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10402015/","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
Hardware Security for Internet of Things Identity Assurance
With the proliferation of Internet of Things (IoT) devices, there is an increasing need to prioritize their security, especially in the context of identity and authentication mechanisms. However, IoT devices have unique limitations in terms of computational capabilities and susceptibility to hardware attacks, which pose significant challenges to establishing strong identity and authentication systems. Paradoxically, the very hardware constraints responsible for these challenges can also offer potential solutions. By incorporating hardware-based identity implementations, it is possible to overcome computational and energy limitations, while bolstering resistance against both hardware and software attacks. This research addresses these challenges by investigating the vulnerabilities and obstacles faced by identity and authentication systems in the IoT context, while also exploring potential technologies to address these issues. Each identified technology underwent meticulous investigation, considering known security attacks, implemented countermeasures, and an assessment of their pros and cons. Furthermore, an extensive literature survey was conducted to identify instances where these technologies have effectively supported device identity. The research also includes a demonstration that evaluates the effectiveness of hardware trust anchors in mitigating various attacks on IoT identity. This empirical evaluation provides valuable insights into the challenges developers encounter when implementing hardware-based identity solutions. Moreover, it underscores the substantial value of these solutions in terms of mitigating attacks and developing robust identity frameworks. By thoroughly examining vulnerabilities, exploring technologies, and conducting empirical evaluations, this research contributes to understanding and promoting the adoption of hardware-based identity and authentication systems in secure IoT environments. The findings emphasize the challenges faced by developers and highlight the significance of hardware trust anchors in enhancing security and facilitating effective identity solutions.
期刊介绍:
IEEE Communications Surveys & Tutorials is an online journal published by the IEEE Communications Society for tutorials and surveys covering all aspects of the communications field. Telecommunications technology is progressing at a rapid pace, and the IEEE Communications Society is committed to providing researchers and other professionals the information and tools to stay abreast. IEEE Communications Surveys and Tutorials focuses on integrating and adding understanding to the existing literature on communications, putting results in context. Whether searching for in-depth information about a familiar area or an introduction into a new area, IEEE Communications Surveys & Tutorials aims to be the premier source of peer-reviewed, comprehensive tutorials and surveys, and pointers to further sources. IEEE Communications Surveys & Tutorials publishes only articles exclusively written for IEEE Communications Surveys & Tutorials and go through a rigorous review process before their publication in the quarterly issues.
A tutorial article in the IEEE Communications Surveys & Tutorials should be designed to help the reader to become familiar with and learn something specific about a chosen topic. In contrast, the term survey, as applied here, is defined to mean a survey of the literature. A survey article in IEEE Communications Surveys & Tutorials should provide a comprehensive review of developments in a selected area, covering its development from its inception to its current state and beyond, and illustrating its development through liberal citations from the literature. Both tutorials and surveys should be tutorial in nature and should be written in a style comprehensible to readers outside the specialty of the article.