{"title":"统一稳健估算","authors":"Zhu Wang","doi":"10.1111/anzs.12409","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>Robust estimation is primarily concerned with providing reliable parameter estimates in the presence of outliers. Numerous robust loss functions have been proposed in regression and classification, along with various computing algorithms. In modern penalised generalised linear models (GLMs), however, there is limited research on robust estimation that can provide weights to determine the outlier status of the observations. This article proposes a unified framework based on a large family of loss functions, a composite of concave and convex functions (CC-family). Properties of the CC-family are investigated, and CC-estimation is innovatively conducted via the iteratively reweighted convex optimisation (IRCO), which is a generalisation of the iteratively reweighted least squares in robust linear regression. For robust GLM, the IRCO becomes the iteratively reweighted GLM. The unified framework contains penalised estimation and robust support vector machine (SVM) and is demonstrated with a variety of data applications.</p>\n </div>","PeriodicalId":55428,"journal":{"name":"Australian & New Zealand Journal of Statistics","volume":"66 1","pages":"77-102"},"PeriodicalIF":0.8000,"publicationDate":"2024-02-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Unified robust estimation\",\"authors\":\"Zhu Wang\",\"doi\":\"10.1111/anzs.12409\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div>\\n \\n <p>Robust estimation is primarily concerned with providing reliable parameter estimates in the presence of outliers. Numerous robust loss functions have been proposed in regression and classification, along with various computing algorithms. In modern penalised generalised linear models (GLMs), however, there is limited research on robust estimation that can provide weights to determine the outlier status of the observations. This article proposes a unified framework based on a large family of loss functions, a composite of concave and convex functions (CC-family). Properties of the CC-family are investigated, and CC-estimation is innovatively conducted via the iteratively reweighted convex optimisation (IRCO), which is a generalisation of the iteratively reweighted least squares in robust linear regression. For robust GLM, the IRCO becomes the iteratively reweighted GLM. The unified framework contains penalised estimation and robust support vector machine (SVM) and is demonstrated with a variety of data applications.</p>\\n </div>\",\"PeriodicalId\":55428,\"journal\":{\"name\":\"Australian & New Zealand Journal of Statistics\",\"volume\":\"66 1\",\"pages\":\"77-102\"},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2024-02-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Australian & New Zealand Journal of Statistics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1111/anzs.12409\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"STATISTICS & PROBABILITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Australian & New Zealand Journal of Statistics","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/anzs.12409","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 0
摘要
摘要稳健估计主要涉及在存在异常值的情况下提供可靠的参数估计。在回归和分类中提出了许多稳健损失函数以及各种计算算法。然而,在现代惩罚性广义线性模型(GLM)中,能提供权重以确定观测值离群状态的稳健估计研究还很有限。本文提出了一个基于损失函数大家族的统一框架,即凹函数和凸函数的复合体(CC-family)。本文研究了 CC 系列的特性,并通过迭代加权凸优化(IRCO)创新性地进行了 CC 估计,IRCO 是稳健线性回归中迭代加权最小二乘法的概括。对于稳健 GLM,IRCO 成为迭代重权 GLM。该统一框架包含惩罚估计和稳健支持向量机(SVM),并通过各种数据应用进行了演示。
Robust estimation is primarily concerned with providing reliable parameter estimates in the presence of outliers. Numerous robust loss functions have been proposed in regression and classification, along with various computing algorithms. In modern penalised generalised linear models (GLMs), however, there is limited research on robust estimation that can provide weights to determine the outlier status of the observations. This article proposes a unified framework based on a large family of loss functions, a composite of concave and convex functions (CC-family). Properties of the CC-family are investigated, and CC-estimation is innovatively conducted via the iteratively reweighted convex optimisation (IRCO), which is a generalisation of the iteratively reweighted least squares in robust linear regression. For robust GLM, the IRCO becomes the iteratively reweighted GLM. The unified framework contains penalised estimation and robust support vector machine (SVM) and is demonstrated with a variety of data applications.
期刊介绍:
The Australian & New Zealand Journal of Statistics is an international journal managed jointly by the Statistical Society of Australia and the New Zealand Statistical Association. Its purpose is to report significant and novel contributions in statistics, ranging across articles on statistical theory, methodology, applications and computing. The journal has a particular focus on statistical techniques that can be readily applied to real-world problems, and on application papers with an Australasian emphasis. Outstanding articles submitted to the journal may be selected as Discussion Papers, to be read at a meeting of either the Statistical Society of Australia or the New Zealand Statistical Association.
The main body of the journal is divided into three sections.
The Theory and Methods Section publishes papers containing original contributions to the theory and methodology of statistics, econometrics and probability, and seeks papers motivated by a real problem and which demonstrate the proposed theory or methodology in that situation. There is a strong preference for papers motivated by, and illustrated with, real data.
The Applications Section publishes papers demonstrating applications of statistical techniques to problems faced by users of statistics in the sciences, government and industry. A particular focus is the application of newly developed statistical methodology to real data and the demonstration of better use of established statistical methodology in an area of application. It seeks to aid teachers of statistics by placing statistical methods in context.
The Statistical Computing Section publishes papers containing new algorithms, code snippets, or software descriptions (for open source software only) which enhance the field through the application of computing. Preference is given to papers featuring publically available code and/or data, and to those motivated by statistical methods for practical problems.