{"title":"同意到不同意:探索部分语义一致性与视觉偏差对组合式零镜头学习的影响","authors":"Xiangyu Li;Xu Yang;Xi Wang;Cheng Deng","doi":"10.1109/TCDS.2024.3367957","DOIUrl":null,"url":null,"abstract":"Compositional zero-shot learning (CZSL) aims to recognize novel concepts from known subconcepts. However, it is still challenging since the intricate interaction between subconcepts is entangled with their corresponding visual features, which affects the recognition accuracy of concepts. Besides, the domain gap between training and testing data leads to the model poor generalization. In this article, we tackle these problems by exploring partial semantic consistency (PSC) to eliminate visual deviation to guarantee the discrimination and generalization of representations. Considering the complicated interaction between subconcepts and their visual features, we decompose seen images into visual elements according to their labels and obtain the instance-level subdeviations from compositions, which is utilized to excavate the category-level primitives of subconcepts. Furthermore, we present a multiscale concept composition (MSCC) approach to produce virtual samples from two aspects, which augments the sufficiency and diversity of samples so that the proposed model can generalize to novel compositions. Extensive experiments indicate that our method significantly outperforms the state-of-the-art approaches on three benchmark datasets.","PeriodicalId":54300,"journal":{"name":"IEEE Transactions on Cognitive and Developmental Systems","volume":"16 4","pages":"1433-1444"},"PeriodicalIF":5.0000,"publicationDate":"2024-02-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Agree to Disagree: Exploring Partial Semantic Consistency Against Visual Deviation for Compositional Zero-Shot Learning\",\"authors\":\"Xiangyu Li;Xu Yang;Xi Wang;Cheng Deng\",\"doi\":\"10.1109/TCDS.2024.3367957\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Compositional zero-shot learning (CZSL) aims to recognize novel concepts from known subconcepts. However, it is still challenging since the intricate interaction between subconcepts is entangled with their corresponding visual features, which affects the recognition accuracy of concepts. Besides, the domain gap between training and testing data leads to the model poor generalization. In this article, we tackle these problems by exploring partial semantic consistency (PSC) to eliminate visual deviation to guarantee the discrimination and generalization of representations. Considering the complicated interaction between subconcepts and their visual features, we decompose seen images into visual elements according to their labels and obtain the instance-level subdeviations from compositions, which is utilized to excavate the category-level primitives of subconcepts. Furthermore, we present a multiscale concept composition (MSCC) approach to produce virtual samples from two aspects, which augments the sufficiency and diversity of samples so that the proposed model can generalize to novel compositions. Extensive experiments indicate that our method significantly outperforms the state-of-the-art approaches on three benchmark datasets.\",\"PeriodicalId\":54300,\"journal\":{\"name\":\"IEEE Transactions on Cognitive and Developmental Systems\",\"volume\":\"16 4\",\"pages\":\"1433-1444\"},\"PeriodicalIF\":5.0000,\"publicationDate\":\"2024-02-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Transactions on Cognitive and Developmental Systems\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10440562/\",\"RegionNum\":3,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Cognitive and Developmental Systems","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10440562/","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
Agree to Disagree: Exploring Partial Semantic Consistency Against Visual Deviation for Compositional Zero-Shot Learning
Compositional zero-shot learning (CZSL) aims to recognize novel concepts from known subconcepts. However, it is still challenging since the intricate interaction between subconcepts is entangled with their corresponding visual features, which affects the recognition accuracy of concepts. Besides, the domain gap between training and testing data leads to the model poor generalization. In this article, we tackle these problems by exploring partial semantic consistency (PSC) to eliminate visual deviation to guarantee the discrimination and generalization of representations. Considering the complicated interaction between subconcepts and their visual features, we decompose seen images into visual elements according to their labels and obtain the instance-level subdeviations from compositions, which is utilized to excavate the category-level primitives of subconcepts. Furthermore, we present a multiscale concept composition (MSCC) approach to produce virtual samples from two aspects, which augments the sufficiency and diversity of samples so that the proposed model can generalize to novel compositions. Extensive experiments indicate that our method significantly outperforms the state-of-the-art approaches on three benchmark datasets.
期刊介绍:
The IEEE Transactions on Cognitive and Developmental Systems (TCDS) focuses on advances in the study of development and cognition in natural (humans, animals) and artificial (robots, agents) systems. It welcomes contributions from multiple related disciplines including cognitive systems, cognitive robotics, developmental and epigenetic robotics, autonomous and evolutionary robotics, social structures, multi-agent and artificial life systems, computational neuroscience, and developmental psychology. Articles on theoretical, computational, application-oriented, and experimental studies as well as reviews in these areas are considered.