使用 CFES 的季节预测系统以及与 SINTEX-F2 的比较

IF 1.7 4区 地球科学 Q4 METEOROLOGY & ATMOSPHERIC SCIENCES Sola Pub Date : 2024-02-23 DOI:10.2151/sola.2024-013
Tomomichi Ogata, Nobumasa Komori, Takeshi Doi, Ayako Yamamoto, Masami Nonaka
{"title":"使用 CFES 的季节预测系统以及与 SINTEX-F2 的比较","authors":"Tomomichi Ogata, Nobumasa Komori, Takeshi Doi, Ayako Yamamoto, Masami Nonaka","doi":"10.2151/sola.2024-013","DOIUrl":null,"url":null,"abstract":"</p><p>In this study, we introduce a new seasonal prediction system using an atmosphere–ocean-coupled general circulation model called CFES (hereafter referred to as CFES ESPreSSO). We compare its prediction skill of the interannual variability of the surface air temperature (SAT) and precipitation anomalies with that of the SINTEX-F2 seasonal prediction system. We find that CFES ESPreSSO has a higher skill in predicting the SAT variability in January-February-March over East Asia and northeastern North America than SINTEX-F2, while the following season (April-May-June), SINTEX-F2 provides better predictions of the SAT variability over the Maritime Continent and subtropical North Pacific. Meanwhile, CFES better predicts the SAT variability in July-August-September over Eurasia and Arctic, and it continues to be so over the following season (October-November-December) over Eurasia. However, the prediction skill of SINTEX-F2 is generally better in the tropics (e.g., SAT in the subtropical North Pacific, SAT and precipitation in the Maritime Continent). Regarding climate indices, CFES shows a better prediction skill for the Atlantic Niño and Ningaloo Niño indices, whereas SINTEX-F2 is generally better for El Niño and the Indian Ocean dipole mode. These results suggest that for improved seasonal forecasting, it is beneficial to consider a multi-model approach, leveraging the respective strengths of each model.</p>\n<p></p>","PeriodicalId":49501,"journal":{"name":"Sola","volume":"2013 1","pages":""},"PeriodicalIF":1.7000,"publicationDate":"2024-02-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Seasonal prediction system using CFES and comparison with SINTEX-F2\",\"authors\":\"Tomomichi Ogata, Nobumasa Komori, Takeshi Doi, Ayako Yamamoto, Masami Nonaka\",\"doi\":\"10.2151/sola.2024-013\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"</p><p>In this study, we introduce a new seasonal prediction system using an atmosphere–ocean-coupled general circulation model called CFES (hereafter referred to as CFES ESPreSSO). We compare its prediction skill of the interannual variability of the surface air temperature (SAT) and precipitation anomalies with that of the SINTEX-F2 seasonal prediction system. We find that CFES ESPreSSO has a higher skill in predicting the SAT variability in January-February-March over East Asia and northeastern North America than SINTEX-F2, while the following season (April-May-June), SINTEX-F2 provides better predictions of the SAT variability over the Maritime Continent and subtropical North Pacific. Meanwhile, CFES better predicts the SAT variability in July-August-September over Eurasia and Arctic, and it continues to be so over the following season (October-November-December) over Eurasia. However, the prediction skill of SINTEX-F2 is generally better in the tropics (e.g., SAT in the subtropical North Pacific, SAT and precipitation in the Maritime Continent). Regarding climate indices, CFES shows a better prediction skill for the Atlantic Niño and Ningaloo Niño indices, whereas SINTEX-F2 is generally better for El Niño and the Indian Ocean dipole mode. These results suggest that for improved seasonal forecasting, it is beneficial to consider a multi-model approach, leveraging the respective strengths of each model.</p>\\n<p></p>\",\"PeriodicalId\":49501,\"journal\":{\"name\":\"Sola\",\"volume\":\"2013 1\",\"pages\":\"\"},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2024-02-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Sola\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://doi.org/10.2151/sola.2024-013\",\"RegionNum\":4,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"METEOROLOGY & ATMOSPHERIC SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Sola","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.2151/sola.2024-013","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"METEOROLOGY & ATMOSPHERIC SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

在本研究中,我们利用大气-海洋耦合大气环流模式 CFES(以下简称 CFES ESPreSSO)推出了一种新的季节预测系统。我们将其对地表气温(SAT)和降水异常年际变化的预测能力与 SINTEX-F2 季节预测系统进行了比较。我们发现,与 SINTEX-F2 相比,CFES ESPreSSO 对东亚和北美东北部 1 月至 2 月至 3 月的 SAT 变率具有更高的预测能力,而 SINTEX-F2 则能更好地预测下一季节(4 月至 5 月至 6 月)海洋大陆和北太平洋亚热带地区的 SAT 变率。同时,CFES 能更好地预测欧亚大陆和北极地区 7-8-9 月的 SAT 变率,并在下一季节(10-11-12 月)继续如此。然而,SINTEX-F2 在热带地区的预测能力普遍较强(例如,北太平洋亚热带地区的 SAT,海洋大陆地区的 SAT 和降水)。在气候指数方面,CFES 对大西洋厄尔尼诺和宁格鲁厄尔尼诺指数的预测能力较强,而 SINTEX-F2 对厄尔尼诺和印度洋偶极模式的预测能力一般较强。这些结果表明,要改进季节预报,最好考虑采用多模式方法,充分利用每个模式各自的优势。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Seasonal prediction system using CFES and comparison with SINTEX-F2

In this study, we introduce a new seasonal prediction system using an atmosphere–ocean-coupled general circulation model called CFES (hereafter referred to as CFES ESPreSSO). We compare its prediction skill of the interannual variability of the surface air temperature (SAT) and precipitation anomalies with that of the SINTEX-F2 seasonal prediction system. We find that CFES ESPreSSO has a higher skill in predicting the SAT variability in January-February-March over East Asia and northeastern North America than SINTEX-F2, while the following season (April-May-June), SINTEX-F2 provides better predictions of the SAT variability over the Maritime Continent and subtropical North Pacific. Meanwhile, CFES better predicts the SAT variability in July-August-September over Eurasia and Arctic, and it continues to be so over the following season (October-November-December) over Eurasia. However, the prediction skill of SINTEX-F2 is generally better in the tropics (e.g., SAT in the subtropical North Pacific, SAT and precipitation in the Maritime Continent). Regarding climate indices, CFES shows a better prediction skill for the Atlantic Niño and Ningaloo Niño indices, whereas SINTEX-F2 is generally better for El Niño and the Indian Ocean dipole mode. These results suggest that for improved seasonal forecasting, it is beneficial to consider a multi-model approach, leveraging the respective strengths of each model.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Sola
Sola 地学-气象与大气科学
CiteScore
3.50
自引率
21.10%
发文量
41
审稿时长
>12 weeks
期刊介绍: SOLA (Scientific Online Letters on the Atmosphere) is a peer-reviewed, Open Access, online-only journal. It publishes scientific discoveries and advances in understanding in meteorology, climatology, the atmospheric sciences and related interdisciplinary areas. SOLA focuses on presenting new and scientifically rigorous observations, experiments, data analyses, numerical modeling, data assimilation, and technical developments as quickly as possible. It achieves this via rapid peer review and publication of research letters, published as Regular Articles. Published and supported by the Meteorological Society of Japan, the journal follows strong research and publication ethics principles. Most manuscripts receive a first decision within one month and a decision upon resubmission within a further month. Accepted articles are then quickly published on the journal’s website, where they are easily accessible to our broad audience.
期刊最新文献
Effects of soil texture datasets on FGOALS-g3 global long-term simulations Massive Parameter Sweep Experiment on Convective Cloud Environment: Changes in Rainfall Characteristics in Moisture–Instability–Shear Space Improving Air-Sea Observations of Typhoons Using Wave Gliders The Impact of Anthropogenic Global Warming and Oceanic Forcing on the Frequency of Quasi-stationary Band-Shaped Precipitation Systems, “Senjo-Kousuitai”, during the Rainy Season of 2023 Compact Microwave Radiometer for Water Vapor Estimation with Machine Learning Method
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1