{"title":"建筑改造措施战略的有效决策方法","authors":"Sofiane Rahmouni, Antar Si Mohammed","doi":"10.1177/1420326x241234817","DOIUrl":null,"url":null,"abstract":"The energy efficiency and sustainability of existing buildings have become a critical concern in Algeria’s efforts to reduce energy consumption and mitigate environmental and economic impacts. To address this challenge, a systematic and effective decision-making method is required to select optimal building retrofit measures in alignment with Algeria’s 2030 energy strategy. In this study, we propose an innovative approach based on the Fuzzy Analytical Hierarchy Process (FAHP), a widely used multi-criteria decision-making method, to evaluate and prioritize different retrofit measures. The FAHP allows decision-makers to have a comprehensive framework for making informed choices by incorporating independently proposed economic, environmental and technical criteria. The results demonstrate the high significance of retrofit measures that enhance thermal insulation, with double glazing and roof insulation emerging as top priorities. Sensitivity analyses confirm the stability and robustness of the decision-making process. This approach offers valuable insights for policymakers and building professionals seeking to implement sustainable and energy-efficient retrofitting strategies in Algeria’s construction sector. By aligning with the country’s energy goals, this decision-making method contributes to achieving a more sustainable and environmentally responsible built environment.","PeriodicalId":13578,"journal":{"name":"Indoor and Built Environment","volume":"153 1","pages":""},"PeriodicalIF":3.2000,"publicationDate":"2024-02-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"An effective decision-making method for building retrofit measures strategy\",\"authors\":\"Sofiane Rahmouni, Antar Si Mohammed\",\"doi\":\"10.1177/1420326x241234817\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The energy efficiency and sustainability of existing buildings have become a critical concern in Algeria’s efforts to reduce energy consumption and mitigate environmental and economic impacts. To address this challenge, a systematic and effective decision-making method is required to select optimal building retrofit measures in alignment with Algeria’s 2030 energy strategy. In this study, we propose an innovative approach based on the Fuzzy Analytical Hierarchy Process (FAHP), a widely used multi-criteria decision-making method, to evaluate and prioritize different retrofit measures. The FAHP allows decision-makers to have a comprehensive framework for making informed choices by incorporating independently proposed economic, environmental and technical criteria. The results demonstrate the high significance of retrofit measures that enhance thermal insulation, with double glazing and roof insulation emerging as top priorities. Sensitivity analyses confirm the stability and robustness of the decision-making process. This approach offers valuable insights for policymakers and building professionals seeking to implement sustainable and energy-efficient retrofitting strategies in Algeria’s construction sector. By aligning with the country’s energy goals, this decision-making method contributes to achieving a more sustainable and environmentally responsible built environment.\",\"PeriodicalId\":13578,\"journal\":{\"name\":\"Indoor and Built Environment\",\"volume\":\"153 1\",\"pages\":\"\"},\"PeriodicalIF\":3.2000,\"publicationDate\":\"2024-02-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Indoor and Built Environment\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1177/1420326x241234817\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CONSTRUCTION & BUILDING TECHNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Indoor and Built Environment","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1177/1420326x241234817","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CONSTRUCTION & BUILDING TECHNOLOGY","Score":null,"Total":0}
An effective decision-making method for building retrofit measures strategy
The energy efficiency and sustainability of existing buildings have become a critical concern in Algeria’s efforts to reduce energy consumption and mitigate environmental and economic impacts. To address this challenge, a systematic and effective decision-making method is required to select optimal building retrofit measures in alignment with Algeria’s 2030 energy strategy. In this study, we propose an innovative approach based on the Fuzzy Analytical Hierarchy Process (FAHP), a widely used multi-criteria decision-making method, to evaluate and prioritize different retrofit measures. The FAHP allows decision-makers to have a comprehensive framework for making informed choices by incorporating independently proposed economic, environmental and technical criteria. The results demonstrate the high significance of retrofit measures that enhance thermal insulation, with double glazing and roof insulation emerging as top priorities. Sensitivity analyses confirm the stability and robustness of the decision-making process. This approach offers valuable insights for policymakers and building professionals seeking to implement sustainable and energy-efficient retrofitting strategies in Algeria’s construction sector. By aligning with the country’s energy goals, this decision-making method contributes to achieving a more sustainable and environmentally responsible built environment.
期刊介绍:
Indoor and Built Environment publishes reports on any topic pertaining to the quality of the indoor and built environment, and how these might effect the health, performance, efficiency and comfort of persons living or working there. Topics range from urban infrastructure, design of buildings, and materials used to laboratory studies including building airflow simulations and health effects. This journal is a member of the Committee on Publication Ethics (COPE).