基于阻抗趋势约束的基序反演深度变异地震小波提取方法

IF 3 2区 地球科学 Q1 GEOCHEMISTRY & GEOPHYSICS Geophysics Pub Date : 2024-02-23 DOI:10.1190/geo2023-0255.1
R. Cai, Chengyu Sun, Zhen’an Yao, Shizhong Li
{"title":"基于阻抗趋势约束的基序反演深度变异地震小波提取方法","authors":"R. Cai, Chengyu Sun, Zhen’an Yao, Shizhong Li","doi":"10.1190/geo2023-0255.1","DOIUrl":null,"url":null,"abstract":"The seismic images produced by pre-stack depth migration show more accurate subsurface structures than time images, resulting in a growing need for depth-domain inversion. However, due to the strong non-stationarity exhibited by depth-domain seismic data, time-domain inversion methods based on the convolutional model cannot be directly applied in the depth domain. To address this issue, we have developed a method for extracting a depth-variant seismic wavelet, which is then combined with a non-stationary convolutional model to enable direct inversion of the depth-domain acoustic impedance. First, we extend the Morlet wavelet to the depth domain and propose an orthogonal matching pursuit spectral decomposition method using the depth-domain Morlet wavelet. We then investigate the waveforms and wavenumber spectra similarities between the depth-domain Morlet wavelet and depth-domain Ricker wavelet and extract depth-variant Ricker wavelets from the depth-wavenumber spectrum. We add a depth-domain impedance trend constraint to the conventional basis pursuit inversion to enhance the lateral continuity of the inversion results. Then, we attain direct inversion of the depth-domain acoustic impedance. Tests of synthetic and field data demonstrate that the proposed method achieves high-accuracy inversion results while maintaining high computational efficiency, highlighting our approach's effectiveness and strong reservoir characterization potential.","PeriodicalId":55102,"journal":{"name":"Geophysics","volume":null,"pages":null},"PeriodicalIF":3.0000,"publicationDate":"2024-02-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A depth-variant seismic wavelet extraction method for basis pursuit inversion with impedance trend constraint\",\"authors\":\"R. Cai, Chengyu Sun, Zhen’an Yao, Shizhong Li\",\"doi\":\"10.1190/geo2023-0255.1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The seismic images produced by pre-stack depth migration show more accurate subsurface structures than time images, resulting in a growing need for depth-domain inversion. However, due to the strong non-stationarity exhibited by depth-domain seismic data, time-domain inversion methods based on the convolutional model cannot be directly applied in the depth domain. To address this issue, we have developed a method for extracting a depth-variant seismic wavelet, which is then combined with a non-stationary convolutional model to enable direct inversion of the depth-domain acoustic impedance. First, we extend the Morlet wavelet to the depth domain and propose an orthogonal matching pursuit spectral decomposition method using the depth-domain Morlet wavelet. We then investigate the waveforms and wavenumber spectra similarities between the depth-domain Morlet wavelet and depth-domain Ricker wavelet and extract depth-variant Ricker wavelets from the depth-wavenumber spectrum. We add a depth-domain impedance trend constraint to the conventional basis pursuit inversion to enhance the lateral continuity of the inversion results. Then, we attain direct inversion of the depth-domain acoustic impedance. Tests of synthetic and field data demonstrate that the proposed method achieves high-accuracy inversion results while maintaining high computational efficiency, highlighting our approach's effectiveness and strong reservoir characterization potential.\",\"PeriodicalId\":55102,\"journal\":{\"name\":\"Geophysics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.0000,\"publicationDate\":\"2024-02-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Geophysics\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://doi.org/10.1190/geo2023-0255.1\",\"RegionNum\":2,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"GEOCHEMISTRY & GEOPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Geophysics","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1190/geo2023-0255.1","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GEOCHEMISTRY & GEOPHYSICS","Score":null,"Total":0}
引用次数: 0

摘要

叠前深度迁移产生的地震图像比时间图像能显示更精确的地下结构,因此对深度域反演的需求日益增长。然而,由于深度域地震数据表现出很强的非稳态性,基于卷积模型的时域反演方法无法直接应用于深度域。为解决这一问题,我们开发了一种提取深度变异地震小波的方法,然后将其与非稳态卷积模型相结合,从而实现深度域声阻抗的直接反演。首先,我们将 Morlet 小波扩展到深度域,并提出了一种使用深度域 Morlet 小波的正交匹配追寻频谱分解方法。然后,我们研究了深度域 Morlet 小波和深度域 Ricker 小波之间的波形和波谱相似性,并从深度波谱中提取了深度变异 Ricker 小波。我们在传统的基序反演中加入了深域阻抗趋势约束,以增强反演结果的横向连续性。然后,我们实现了深度域声阻抗的直接反演。对合成数据和现场数据的测试表明,所提出的方法既能获得高精度的反演结果,又能保持较高的计算效率,凸显了我们方法的有效性和强大的储层表征潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A depth-variant seismic wavelet extraction method for basis pursuit inversion with impedance trend constraint
The seismic images produced by pre-stack depth migration show more accurate subsurface structures than time images, resulting in a growing need for depth-domain inversion. However, due to the strong non-stationarity exhibited by depth-domain seismic data, time-domain inversion methods based on the convolutional model cannot be directly applied in the depth domain. To address this issue, we have developed a method for extracting a depth-variant seismic wavelet, which is then combined with a non-stationary convolutional model to enable direct inversion of the depth-domain acoustic impedance. First, we extend the Morlet wavelet to the depth domain and propose an orthogonal matching pursuit spectral decomposition method using the depth-domain Morlet wavelet. We then investigate the waveforms and wavenumber spectra similarities between the depth-domain Morlet wavelet and depth-domain Ricker wavelet and extract depth-variant Ricker wavelets from the depth-wavenumber spectrum. We add a depth-domain impedance trend constraint to the conventional basis pursuit inversion to enhance the lateral continuity of the inversion results. Then, we attain direct inversion of the depth-domain acoustic impedance. Tests of synthetic and field data demonstrate that the proposed method achieves high-accuracy inversion results while maintaining high computational efficiency, highlighting our approach's effectiveness and strong reservoir characterization potential.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Geophysics
Geophysics 地学-地球化学与地球物理
CiteScore
6.90
自引率
18.20%
发文量
354
审稿时长
3 months
期刊介绍: Geophysics, published by the Society of Exploration Geophysicists since 1936, is an archival journal encompassing all aspects of research, exploration, and education in applied geophysics. Geophysics articles, generally more than 275 per year in six issues, cover the entire spectrum of geophysical methods, including seismology, potential fields, electromagnetics, and borehole measurements. Geophysics, a bimonthly, provides theoretical and mathematical tools needed to reproduce depicted work, encouraging further development and research. Geophysics papers, drawn from industry and academia, undergo a rigorous peer-review process to validate the described methods and conclusions and ensure the highest editorial and production quality. Geophysics editors strongly encourage the use of real data, including actual case histories, to highlight current technology and tutorials to stimulate ideas. Some issues feature a section of solicited papers on a particular subject of current interest. Recent special sections focused on seismic anisotropy, subsalt exploration and development, and microseismic monitoring. The PDF format of each Geophysics paper is the official version of record.
期刊最新文献
Velocity model-based adapted meshes using optimal transport An Efficient Cascadic Multigrid Method with Regularization Technique for 3-D Electromagnetic Finite-Element Anisotropic Modelling Noise Attenuation in Distributed Acoustic Sensing Data Using a Guided Unsupervised Deep Learning Network Non-stationary adaptive S-wave suppression of ocean bottom node data Method and application of sand body thickness prediction based on virtual sample-machine learning
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1