G. Tuncer, Zerrin Aktas, S. Başaran, A. Çağatay, H. Eraksoy
{"title":"N-乙酰半胱氨酸、利福平和臭氧对泛耐药肺炎克雷伯菌生物膜形成的影响:一项实验研究","authors":"G. Tuncer, Zerrin Aktas, S. Başaran, A. Çağatay, H. Eraksoy","doi":"10.1590/1516-3180.2023.0113.R1.29112023","DOIUrl":null,"url":null,"abstract":"ABSTRACT BACKGROUND: To the best of our knowledge, this is the first study to evaluate the effectiveness of specific concentrations of antibiofilm agents, such as N-acetyl cysteine (NAC), rifampicin, and ozone, for the treatment of pan-resistant Klebsiella pneumoniae (PRKp). OBJECTIVES: We evaluated the effectiveness of antibiofilm agents, such as NAC, rifampicin, and ozone, on biofilm formation in PRKp at 2, 6, 24, and 72 h. DESIGN AND SETTING: This single-center experimental study was conducted on June 15, 2017, and July 15, 2018, at Istanbul Faculty of Medicine, Istanbul University, Turkey. METHODS: Biofilm formation and the efficacy of these agents on the biofilm layer were demonstrated using colony counting and laser-screened confocal microscopy. RESULTS: NAC at a final concentration of 2 μg/mL was administered to bacteria that formed biofilms (24 h), and no significant decrease was detected in the bacterial counts of all isolates (all P > 0.05). Rifampicin with a final concentration of 0.1 μg/mL was administered to bacteria that formed biofilm (24 h), and no significant decrease was detected in bacterial count (all P > 0.05). Notably, ozonated water of even 4.78 mg/L concentration for 72 h decreased the bacterial count by ≥ 2 log10. CONCLUSION: Different approaches are needed for treating PRKp isolates. We demonstrate that PRKp isolates can be successfully treated with higher concentrations of ozone.","PeriodicalId":21479,"journal":{"name":"São Paulo Medical Journal","volume":"4 2","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-02-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Effect of N-acetyl cysteine, rifampicin, and ozone on biofilm formation in pan-resistant Klebsiella pneumoniae: an experimental study\",\"authors\":\"G. Tuncer, Zerrin Aktas, S. Başaran, A. Çağatay, H. Eraksoy\",\"doi\":\"10.1590/1516-3180.2023.0113.R1.29112023\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"ABSTRACT BACKGROUND: To the best of our knowledge, this is the first study to evaluate the effectiveness of specific concentrations of antibiofilm agents, such as N-acetyl cysteine (NAC), rifampicin, and ozone, for the treatment of pan-resistant Klebsiella pneumoniae (PRKp). OBJECTIVES: We evaluated the effectiveness of antibiofilm agents, such as NAC, rifampicin, and ozone, on biofilm formation in PRKp at 2, 6, 24, and 72 h. DESIGN AND SETTING: This single-center experimental study was conducted on June 15, 2017, and July 15, 2018, at Istanbul Faculty of Medicine, Istanbul University, Turkey. METHODS: Biofilm formation and the efficacy of these agents on the biofilm layer were demonstrated using colony counting and laser-screened confocal microscopy. RESULTS: NAC at a final concentration of 2 μg/mL was administered to bacteria that formed biofilms (24 h), and no significant decrease was detected in the bacterial counts of all isolates (all P > 0.05). Rifampicin with a final concentration of 0.1 μg/mL was administered to bacteria that formed biofilm (24 h), and no significant decrease was detected in bacterial count (all P > 0.05). Notably, ozonated water of even 4.78 mg/L concentration for 72 h decreased the bacterial count by ≥ 2 log10. CONCLUSION: Different approaches are needed for treating PRKp isolates. We demonstrate that PRKp isolates can be successfully treated with higher concentrations of ozone.\",\"PeriodicalId\":21479,\"journal\":{\"name\":\"São Paulo Medical Journal\",\"volume\":\"4 2\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-02-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"São Paulo Medical Journal\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1590/1516-3180.2023.0113.R1.29112023\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"São Paulo Medical Journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1590/1516-3180.2023.0113.R1.29112023","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Effect of N-acetyl cysteine, rifampicin, and ozone on biofilm formation in pan-resistant Klebsiella pneumoniae: an experimental study
ABSTRACT BACKGROUND: To the best of our knowledge, this is the first study to evaluate the effectiveness of specific concentrations of antibiofilm agents, such as N-acetyl cysteine (NAC), rifampicin, and ozone, for the treatment of pan-resistant Klebsiella pneumoniae (PRKp). OBJECTIVES: We evaluated the effectiveness of antibiofilm agents, such as NAC, rifampicin, and ozone, on biofilm formation in PRKp at 2, 6, 24, and 72 h. DESIGN AND SETTING: This single-center experimental study was conducted on June 15, 2017, and July 15, 2018, at Istanbul Faculty of Medicine, Istanbul University, Turkey. METHODS: Biofilm formation and the efficacy of these agents on the biofilm layer were demonstrated using colony counting and laser-screened confocal microscopy. RESULTS: NAC at a final concentration of 2 μg/mL was administered to bacteria that formed biofilms (24 h), and no significant decrease was detected in the bacterial counts of all isolates (all P > 0.05). Rifampicin with a final concentration of 0.1 μg/mL was administered to bacteria that formed biofilm (24 h), and no significant decrease was detected in bacterial count (all P > 0.05). Notably, ozonated water of even 4.78 mg/L concentration for 72 h decreased the bacterial count by ≥ 2 log10. CONCLUSION: Different approaches are needed for treating PRKp isolates. We demonstrate that PRKp isolates can be successfully treated with higher concentrations of ozone.