预测非线性频率骨干曲线的贝叶斯多保真度神经网络

IF 0.5 Q4 ENGINEERING, MECHANICAL Journal of Verification, Validation and Uncertainty Quantification Pub Date : 2024-02-19 DOI:10.1115/1.4064776
David A. Najera-Flores, Jonel Ortiz, Moheimin Khan, Robert Kuether, Paul Miles
{"title":"预测非线性频率骨干曲线的贝叶斯多保真度神经网络","authors":"David A. Najera-Flores, Jonel Ortiz, Moheimin Khan, Robert Kuether, Paul Miles","doi":"10.1115/1.4064776","DOIUrl":null,"url":null,"abstract":"\n The use of structural mechanics models during the design process often leads to the development of models of varying fidelity. Often low-fidelity models are efficient to simulate but lack accuracy, while the high-fidelity counterparts are accurate with less efficiency. This paper presents a multi-fidelity surrogate modeling approach that combines the accuracy of a high-fidelity finite element model with the efficiency of a low-fidelity model to train an even faster surrogate model that parameterizes the design space of interest. The objective of these models is to predict the nonlinear frequency backbone curves of the Tribomechadynamics Research Challenge benchmark structure which exhibits simultaneous nonlinearities from frictional contact and geometric nonlinearity. The surrogate model consists of an ensemble of neural networks that learn the mapping between low and high-fidelity data through nonlinear transformations. Bayesian neural networks are used to assess the surrogate model's uncertainty. Once trained, the multi-fidelity neural network is used to perform sensitivity analysis to assess the influence of the design parameters on the predicted backbone curves. Additionally, Bayesian calibration is performed to update the input parameter distributions to correlate the model parameters to the collection of experimentally measured backbone curves.","PeriodicalId":52254,"journal":{"name":"Journal of Verification, Validation and Uncertainty Quantification","volume":null,"pages":null},"PeriodicalIF":0.5000,"publicationDate":"2024-02-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Bayesian Multi-fidelity Neural Network to Predict Nonlinear Frequency Backbone Curves\",\"authors\":\"David A. Najera-Flores, Jonel Ortiz, Moheimin Khan, Robert Kuether, Paul Miles\",\"doi\":\"10.1115/1.4064776\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n The use of structural mechanics models during the design process often leads to the development of models of varying fidelity. Often low-fidelity models are efficient to simulate but lack accuracy, while the high-fidelity counterparts are accurate with less efficiency. This paper presents a multi-fidelity surrogate modeling approach that combines the accuracy of a high-fidelity finite element model with the efficiency of a low-fidelity model to train an even faster surrogate model that parameterizes the design space of interest. The objective of these models is to predict the nonlinear frequency backbone curves of the Tribomechadynamics Research Challenge benchmark structure which exhibits simultaneous nonlinearities from frictional contact and geometric nonlinearity. The surrogate model consists of an ensemble of neural networks that learn the mapping between low and high-fidelity data through nonlinear transformations. Bayesian neural networks are used to assess the surrogate model's uncertainty. Once trained, the multi-fidelity neural network is used to perform sensitivity analysis to assess the influence of the design parameters on the predicted backbone curves. Additionally, Bayesian calibration is performed to update the input parameter distributions to correlate the model parameters to the collection of experimentally measured backbone curves.\",\"PeriodicalId\":52254,\"journal\":{\"name\":\"Journal of Verification, Validation and Uncertainty Quantification\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2024-02-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Verification, Validation and Uncertainty Quantification\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1115/1.4064776\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ENGINEERING, MECHANICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Verification, Validation and Uncertainty Quantification","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/1.4064776","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 0

摘要

在设计过程中使用结构力学模型往往会导致开发出不同保真度的模型。通常情况下,低保真模型模拟效率高,但缺乏准确性,而高保真模型准确性高,但效率较低。本文介绍了一种多保真度代用模型方法,该方法将高保真有限元模型的精确性与低保真模型的高效性相结合,从而训练出更快的代用模型,对相关设计空间进行参数化。这些模型的目标是预测摩擦机械动力学研究挑战赛基准结构的非线性频率主干曲线,该结构同时具有摩擦接触和几何非线性的非线性特性。代用模型由一组神经网络组成,通过非线性变换学习低保真和高保真数据之间的映射。贝叶斯神经网络用于评估代用模型的不确定性。训练完成后,多保真度神经网络将用于执行敏感性分析,以评估设计参数对预测主干曲线的影响。此外,还进行了贝叶斯校准以更新输入参数分布,从而将模型参数与实验测量的主干曲线集合相关联。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A Bayesian Multi-fidelity Neural Network to Predict Nonlinear Frequency Backbone Curves
The use of structural mechanics models during the design process often leads to the development of models of varying fidelity. Often low-fidelity models are efficient to simulate but lack accuracy, while the high-fidelity counterparts are accurate with less efficiency. This paper presents a multi-fidelity surrogate modeling approach that combines the accuracy of a high-fidelity finite element model with the efficiency of a low-fidelity model to train an even faster surrogate model that parameterizes the design space of interest. The objective of these models is to predict the nonlinear frequency backbone curves of the Tribomechadynamics Research Challenge benchmark structure which exhibits simultaneous nonlinearities from frictional contact and geometric nonlinearity. The surrogate model consists of an ensemble of neural networks that learn the mapping between low and high-fidelity data through nonlinear transformations. Bayesian neural networks are used to assess the surrogate model's uncertainty. Once trained, the multi-fidelity neural network is used to perform sensitivity analysis to assess the influence of the design parameters on the predicted backbone curves. Additionally, Bayesian calibration is performed to update the input parameter distributions to correlate the model parameters to the collection of experimentally measured backbone curves.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.60
自引率
16.70%
发文量
12
期刊最新文献
A Curved Surface Integral Method for Reliability Analysis of Multiple Failure Modes System with Non-Overlapping Failure Domains A Framework for Developing Systematic Testbeds for Multi-Fidelity Optimization Techniques Reliability Analysis for RV Reducer by Combining PCE and Saddlepoint Approximation Considering Multi-Failure Modes Machine Learning-Based Resilience Modeling and Assessment of High Consequence Systems Under Uncertainty Posterior Covariance Matrix Approximations
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1