MFEMDroid:利用多类型特征和集合建模的新型恶意软件检测框架

IF 1.3 4区 计算机科学 Q3 COMPUTER SCIENCE, INFORMATION SYSTEMS IET Information Security Pub Date : 2024-02-17 DOI:10.1049/2024/2850804
Wei Gu, Hongyan Xing, Tianhao Hou
{"title":"MFEMDroid:利用多类型特征和集合建模的新型恶意软件检测框架","authors":"Wei Gu,&nbsp;Hongyan Xing,&nbsp;Tianhao Hou","doi":"10.1049/2024/2850804","DOIUrl":null,"url":null,"abstract":"<div>\n <p>The continuous malicious attacks on Internet of Things devices pose a potential threat to the economic and private information security of end-users, especially on the dominant Android devices. Combining static analysis methods with deep Learning is a promising approach to defend against that. This kind of method has two limitations: the first is that the current single-permission mechanism is not insufficient to regulate interapplication resource acquisition; another problem is that current work on feature learning is dedicated to modifying a single network structure, which may result in a suboptimal solution. In this study, to solve the abovementioned problems, we propose a novel malware detection framework MFEMDroid, which combines multitype features analysis and ensemble modeling. The Provider feature, facilitating information requests between applications (apps) and serving as an indispensable data storage method, plays a vital role in characterizing app behavior. Hence, we extract permissions and Provider features to comprehensively characterize app behavior and probe potentially dangerous combinations between or within these features. To address oversparse datasets and reduce feature learning overhead, we employ an auto-encoder for feature dimensionality reduction. Furthermore, we design an ensemble network based on SENet, ResNet, and the evolutionary convolutional neural network Squeeze Excitation Residual Network (SEResNet) to explore the hidden associations between different types of features from multiple perspectives. We performed extensive experiments to evaluate its method performance on real-world samples. The evaluation results demonstrate that the proposed framework can detect malware with an accuracy of 95.38%, which is much better than state-of-the-art solutions. These promising experimental results show that MFEMDroid is an effective approach to detect Android malware.</p>\n </div>","PeriodicalId":50380,"journal":{"name":"IET Information Security","volume":"2024 1","pages":""},"PeriodicalIF":1.3000,"publicationDate":"2024-02-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1049/2024/2850804","citationCount":"0","resultStr":"{\"title\":\"MFEMDroid: A Novel Malware Detection Framework Using Combined Multitype Features and Ensemble Modeling\",\"authors\":\"Wei Gu,&nbsp;Hongyan Xing,&nbsp;Tianhao Hou\",\"doi\":\"10.1049/2024/2850804\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div>\\n <p>The continuous malicious attacks on Internet of Things devices pose a potential threat to the economic and private information security of end-users, especially on the dominant Android devices. Combining static analysis methods with deep Learning is a promising approach to defend against that. This kind of method has two limitations: the first is that the current single-permission mechanism is not insufficient to regulate interapplication resource acquisition; another problem is that current work on feature learning is dedicated to modifying a single network structure, which may result in a suboptimal solution. In this study, to solve the abovementioned problems, we propose a novel malware detection framework MFEMDroid, which combines multitype features analysis and ensemble modeling. The Provider feature, facilitating information requests between applications (apps) and serving as an indispensable data storage method, plays a vital role in characterizing app behavior. Hence, we extract permissions and Provider features to comprehensively characterize app behavior and probe potentially dangerous combinations between or within these features. To address oversparse datasets and reduce feature learning overhead, we employ an auto-encoder for feature dimensionality reduction. Furthermore, we design an ensemble network based on SENet, ResNet, and the evolutionary convolutional neural network Squeeze Excitation Residual Network (SEResNet) to explore the hidden associations between different types of features from multiple perspectives. We performed extensive experiments to evaluate its method performance on real-world samples. The evaluation results demonstrate that the proposed framework can detect malware with an accuracy of 95.38%, which is much better than state-of-the-art solutions. These promising experimental results show that MFEMDroid is an effective approach to detect Android malware.</p>\\n </div>\",\"PeriodicalId\":50380,\"journal\":{\"name\":\"IET Information Security\",\"volume\":\"2024 1\",\"pages\":\"\"},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2024-02-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1049/2024/2850804\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IET Information Security\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1049/2024/2850804\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IET Information Security","FirstCategoryId":"94","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1049/2024/2850804","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0

摘要

对物联网设备的持续恶意攻击对终端用户的经济和私人信息安全构成了潜在威胁,尤其是在占主导地位的安卓设备上。将静态分析方法与深度学习相结合是一种很有前景的防御方法。这种方法有两个局限性:一是目前的单一许可机制不足以规范应用间的资源获取;另一个问题是目前的特征学习工作致力于修改单一的网络结构,可能会导致次优解。为解决上述问题,本研究提出了一种新型恶意软件检测框架 MFEMDroid,该框架将多类型特征分析和集合建模相结合。提供者(Provider)特征有助于应用程序(Apps)之间的信息请求,是一种不可或缺的数据存储方法,在描述应用程序行为方面发挥着重要作用。因此,我们提取权限和 "提供者 "特征来全面描述应用程序行为,并探究这些特征之间或内部潜在的危险组合。为了解决数据集过于稀疏的问题并减少特征学习开销,我们采用了自动编码器来降低特征维度。此外,我们还设计了一个基于 SENet、ResNet 和进化卷积神经网络 Squeeze Excitation Residual Network(SEResNet)的集合网络,以从多个角度探索不同类型特征之间的隐藏关联。我们进行了大量实验,以评估其在真实世界样本中的方法性能。评估结果表明,所提出的框架能以 95.38% 的准确率检测恶意软件,远远优于最先进的解决方案。这些可喜的实验结果表明,MFEMDroid 是一种检测安卓恶意软件的有效方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
MFEMDroid: A Novel Malware Detection Framework Using Combined Multitype Features and Ensemble Modeling

The continuous malicious attacks on Internet of Things devices pose a potential threat to the economic and private information security of end-users, especially on the dominant Android devices. Combining static analysis methods with deep Learning is a promising approach to defend against that. This kind of method has two limitations: the first is that the current single-permission mechanism is not insufficient to regulate interapplication resource acquisition; another problem is that current work on feature learning is dedicated to modifying a single network structure, which may result in a suboptimal solution. In this study, to solve the abovementioned problems, we propose a novel malware detection framework MFEMDroid, which combines multitype features analysis and ensemble modeling. The Provider feature, facilitating information requests between applications (apps) and serving as an indispensable data storage method, plays a vital role in characterizing app behavior. Hence, we extract permissions and Provider features to comprehensively characterize app behavior and probe potentially dangerous combinations between or within these features. To address oversparse datasets and reduce feature learning overhead, we employ an auto-encoder for feature dimensionality reduction. Furthermore, we design an ensemble network based on SENet, ResNet, and the evolutionary convolutional neural network Squeeze Excitation Residual Network (SEResNet) to explore the hidden associations between different types of features from multiple perspectives. We performed extensive experiments to evaluate its method performance on real-world samples. The evaluation results demonstrate that the proposed framework can detect malware with an accuracy of 95.38%, which is much better than state-of-the-art solutions. These promising experimental results show that MFEMDroid is an effective approach to detect Android malware.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
IET Information Security
IET Information Security 工程技术-计算机:理论方法
CiteScore
3.80
自引率
7.10%
发文量
47
审稿时长
8.6 months
期刊介绍: IET Information Security publishes original research papers in the following areas of information security and cryptography. Submitting authors should specify clearly in their covering statement the area into which their paper falls. Scope: Access Control and Database Security Ad-Hoc Network Aspects Anonymity and E-Voting Authentication Block Ciphers and Hash Functions Blockchain, Bitcoin (Technical aspects only) Broadcast Encryption and Traitor Tracing Combinatorial Aspects Covert Channels and Information Flow Critical Infrastructures Cryptanalysis Dependability Digital Rights Management Digital Signature Schemes Digital Steganography Economic Aspects of Information Security Elliptic Curve Cryptography and Number Theory Embedded Systems Aspects Embedded Systems Security and Forensics Financial Cryptography Firewall Security Formal Methods and Security Verification Human Aspects Information Warfare and Survivability Intrusion Detection Java and XML Security Key Distribution Key Management Malware Multi-Party Computation and Threshold Cryptography Peer-to-peer Security PKIs Public-Key and Hybrid Encryption Quantum Cryptography Risks of using Computers Robust Networks Secret Sharing Secure Electronic Commerce Software Obfuscation Stream Ciphers Trust Models Watermarking and Fingerprinting Special Issues. Current Call for Papers: Security on Mobile and IoT devices - https://digital-library.theiet.org/files/IET_IFS_SMID_CFP.pdf
期刊最新文献
Functional Message Authentication Codes With Message and Function Privacy Lattice-Based CP-ABE for Optimal Broadcast Encryption With Polynomial-Depth Circuits Full-Accessible Multiparty Searchable Encryption Scheme for Shared Cloud Storage A Trust Based Anomaly Detection Scheme Using a Hybrid Deep Learning Model for IoT Routing Attacks Mitigation A Comprehensive Investigation of Anomaly Detection Methods in Deep Learning and Machine Learning: 2019–2023
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1