检查生成式对抗网络判别器中的病态偏差:StyleGAN3 模型案例研究

ArXiv Pub Date : 2024-02-15 DOI:10.48550/arXiv.2402.09786
Alvin Grissom II, Ryan F. Lei, Jeova Farias Sales Rocha Neto, Bailey Lin, Ryan Trotter
{"title":"检查生成式对抗网络判别器中的病态偏差:StyleGAN3 模型案例研究","authors":"Alvin Grissom II, Ryan F. Lei, Jeova Farias Sales Rocha Neto, Bailey Lin, Ryan Trotter","doi":"10.48550/arXiv.2402.09786","DOIUrl":null,"url":null,"abstract":"Generative adversarial networks generate photorealistic faces that are often indistinguishable by humans from real faces. We find that the discriminator in the pre-trained StyleGAN3 model, a popular GAN network, systematically stratifies scores by both image- and face-level qualities and that this disproportionately affects images across gender, race, and other categories. We examine the discriminator's bias for color and luminance across axes perceived race and gender; we then examine axes common in research on stereotyping in social psychology.","PeriodicalId":8425,"journal":{"name":"ArXiv","volume":"17 16","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-02-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Examining Pathological Bias in a Generative Adversarial Network Discriminator: A Case Study on a StyleGAN3 Model\",\"authors\":\"Alvin Grissom II, Ryan F. Lei, Jeova Farias Sales Rocha Neto, Bailey Lin, Ryan Trotter\",\"doi\":\"10.48550/arXiv.2402.09786\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Generative adversarial networks generate photorealistic faces that are often indistinguishable by humans from real faces. We find that the discriminator in the pre-trained StyleGAN3 model, a popular GAN network, systematically stratifies scores by both image- and face-level qualities and that this disproportionately affects images across gender, race, and other categories. We examine the discriminator's bias for color and luminance across axes perceived race and gender; we then examine axes common in research on stereotyping in social psychology.\",\"PeriodicalId\":8425,\"journal\":{\"name\":\"ArXiv\",\"volume\":\"17 16\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-02-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ArXiv\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.48550/arXiv.2402.09786\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ArXiv","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.48550/arXiv.2402.09786","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

生成对抗网络生成的逼真人脸通常无法被人类与真实人脸区分开来。我们发现,预先训练好的 StyleGAN3 模型(一种流行的 GAN 网络)中的判别器会根据图像和人脸级别的特质对得分进行系统分层,这对不同性别、种族和其他类别的图像产生了不成比例的影响。我们研究了判别器在感知种族和性别的轴上对颜色和亮度的偏差;然后我们研究了社会心理学中刻板印象研究中常见的轴。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Examining Pathological Bias in a Generative Adversarial Network Discriminator: A Case Study on a StyleGAN3 Model
Generative adversarial networks generate photorealistic faces that are often indistinguishable by humans from real faces. We find that the discriminator in the pre-trained StyleGAN3 model, a popular GAN network, systematically stratifies scores by both image- and face-level qualities and that this disproportionately affects images across gender, race, and other categories. We examine the discriminator's bias for color and luminance across axes perceived race and gender; we then examine axes common in research on stereotyping in social psychology.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
The Brain Tumor Segmentation - Metastases (BraTS-METS) Challenge 2023: Brain Metastasis Segmentation on Pre-treatment MRI. Image Statistics Predict the Sensitivity of Perceptual Quality Metrics. The Brain Tumor Segmentation (BraTS) Challenge 2023: Brain MR Image Synthesis for Tumor Segmentation (BraSyn). Matching Patients to Clinical Trials with Large Language Models. Epithelial layer fluidization by curvature-induced unjamming.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1