Tianyi Zhou, Stefan Neumann, Kiran Garimella, A. Gionis
{"title":"利用低等级更新模拟时间轴算法对舆论动态的影响","authors":"Tianyi Zhou, Stefan Neumann, Kiran Garimella, A. Gionis","doi":"10.48550/arXiv.2402.10053","DOIUrl":null,"url":null,"abstract":"Timeline algorithms are key parts of online social networks, but during recent years they have been blamed for increasing polarization and disagreement in our society. Opinion-dynamics models have been used to study a variety of phenomena in online social networks, but an open question remains on how these models can be augmented to take into account the fine-grained impact of user-level timeline algorithms. We make progress on this question by providing a way to model the impact of timeline algorithms on opinion dynamics. Specifically, we show how the popular Friedkin--Johnsen opinion-formation model can be augmented based on aggregate information, extracted from timeline data. We use our model to study the problem of minimizing the polarization and disagreement; we assume that we are allowed to make small changes to the users' timeline compositions by strengthening some topics of discussion and penalizing some others. We present a gradient descent-based algorithm for this problem, and show that under realistic parameter settings, our algorithm computes a $(1+\\varepsilon)$-approximate solution in time $\\tilde{O}(m\\sqrt{n} \\lg(1/\\varepsilon))$, where $m$ is the number of edges in the graph and $n$ is the number of vertices. We also present an algorithm that provably computes an $\\varepsilon$-approximation of our model in near-linear time. We evaluate our method on real-world data and show that it effectively reduces the polarization and disagreement in the network. Finally, we release an anonymized graph dataset with ground-truth opinions and more than 27\\,000 nodes (the previously largest publicly available dataset contains less than 550 nodes).","PeriodicalId":8425,"journal":{"name":"ArXiv","volume":"8 9","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-02-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Modeling the Impact of Timeline Algorithms on Opinion Dynamics Using Low-rank Updates\",\"authors\":\"Tianyi Zhou, Stefan Neumann, Kiran Garimella, A. Gionis\",\"doi\":\"10.48550/arXiv.2402.10053\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Timeline algorithms are key parts of online social networks, but during recent years they have been blamed for increasing polarization and disagreement in our society. Opinion-dynamics models have been used to study a variety of phenomena in online social networks, but an open question remains on how these models can be augmented to take into account the fine-grained impact of user-level timeline algorithms. We make progress on this question by providing a way to model the impact of timeline algorithms on opinion dynamics. Specifically, we show how the popular Friedkin--Johnsen opinion-formation model can be augmented based on aggregate information, extracted from timeline data. We use our model to study the problem of minimizing the polarization and disagreement; we assume that we are allowed to make small changes to the users' timeline compositions by strengthening some topics of discussion and penalizing some others. We present a gradient descent-based algorithm for this problem, and show that under realistic parameter settings, our algorithm computes a $(1+\\\\varepsilon)$-approximate solution in time $\\\\tilde{O}(m\\\\sqrt{n} \\\\lg(1/\\\\varepsilon))$, where $m$ is the number of edges in the graph and $n$ is the number of vertices. We also present an algorithm that provably computes an $\\\\varepsilon$-approximation of our model in near-linear time. We evaluate our method on real-world data and show that it effectively reduces the polarization and disagreement in the network. Finally, we release an anonymized graph dataset with ground-truth opinions and more than 27\\\\,000 nodes (the previously largest publicly available dataset contains less than 550 nodes).\",\"PeriodicalId\":8425,\"journal\":{\"name\":\"ArXiv\",\"volume\":\"8 9\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-02-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ArXiv\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.48550/arXiv.2402.10053\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ArXiv","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.48550/arXiv.2402.10053","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Modeling the Impact of Timeline Algorithms on Opinion Dynamics Using Low-rank Updates
Timeline algorithms are key parts of online social networks, but during recent years they have been blamed for increasing polarization and disagreement in our society. Opinion-dynamics models have been used to study a variety of phenomena in online social networks, but an open question remains on how these models can be augmented to take into account the fine-grained impact of user-level timeline algorithms. We make progress on this question by providing a way to model the impact of timeline algorithms on opinion dynamics. Specifically, we show how the popular Friedkin--Johnsen opinion-formation model can be augmented based on aggregate information, extracted from timeline data. We use our model to study the problem of minimizing the polarization and disagreement; we assume that we are allowed to make small changes to the users' timeline compositions by strengthening some topics of discussion and penalizing some others. We present a gradient descent-based algorithm for this problem, and show that under realistic parameter settings, our algorithm computes a $(1+\varepsilon)$-approximate solution in time $\tilde{O}(m\sqrt{n} \lg(1/\varepsilon))$, where $m$ is the number of edges in the graph and $n$ is the number of vertices. We also present an algorithm that provably computes an $\varepsilon$-approximation of our model in near-linear time. We evaluate our method on real-world data and show that it effectively reduces the polarization and disagreement in the network. Finally, we release an anonymized graph dataset with ground-truth opinions and more than 27\,000 nodes (the previously largest publicly available dataset contains less than 550 nodes).