{"title":"混合复合材料壳体面板在动态载荷下的挠度行为","authors":"S. Tiwari, C. K. Hirwani, A. G. Barman","doi":"10.1007/s11029-024-10171-9","DOIUrl":null,"url":null,"abstract":"<p>Dynamic behavior of hybrid composite shallow shell panels was analyzed utilizing a high-order shear deformation theory (HOSDT) in conjunction with the finite-element method (FEM). To enhance the suitability of plant-fiber composites and to use them as substitutes for pure synthetic-fiber composites, the hybridization of banana-epoxy and glass-epoxy composites was performed, and different sets of hybrid composites were prepared by altering the layers of glass and banana fibers. The elastic constants of these composites were evaluated experimentally and utilized in the further numerical investigation. Simultaneously, a mathematical formulation was developed based on a HOSDT and the FEM. The governing equation of a transient analysis was derived using the Hamilton’s principle and Newmark’s direct integration scheme to get responses in the time domain. First, the consistency of the present model was checked via an element convergence test, and the accuracy of the model was established by comparing the transient responses obtained from the current model with those of published data. Afterwards, different parametric investigations were carried out to explore the influence of the curvature ratio, shell geometry, hybridization, end conditions, and loading rate on the time-dependent responses of the composites.</p>","PeriodicalId":18308,"journal":{"name":"Mechanics of Composite Materials","volume":"173 1","pages":""},"PeriodicalIF":1.5000,"publicationDate":"2024-02-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Deflection Behaviour of Hybrid Composite Shell Panels Under Dynamic Loadings\",\"authors\":\"S. Tiwari, C. K. Hirwani, A. G. Barman\",\"doi\":\"10.1007/s11029-024-10171-9\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Dynamic behavior of hybrid composite shallow shell panels was analyzed utilizing a high-order shear deformation theory (HOSDT) in conjunction with the finite-element method (FEM). To enhance the suitability of plant-fiber composites and to use them as substitutes for pure synthetic-fiber composites, the hybridization of banana-epoxy and glass-epoxy composites was performed, and different sets of hybrid composites were prepared by altering the layers of glass and banana fibers. The elastic constants of these composites were evaluated experimentally and utilized in the further numerical investigation. Simultaneously, a mathematical formulation was developed based on a HOSDT and the FEM. The governing equation of a transient analysis was derived using the Hamilton’s principle and Newmark’s direct integration scheme to get responses in the time domain. First, the consistency of the present model was checked via an element convergence test, and the accuracy of the model was established by comparing the transient responses obtained from the current model with those of published data. Afterwards, different parametric investigations were carried out to explore the influence of the curvature ratio, shell geometry, hybridization, end conditions, and loading rate on the time-dependent responses of the composites.</p>\",\"PeriodicalId\":18308,\"journal\":{\"name\":\"Mechanics of Composite Materials\",\"volume\":\"173 1\",\"pages\":\"\"},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2024-02-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mechanics of Composite Materials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1007/s11029-024-10171-9\",\"RegionNum\":4,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATERIALS SCIENCE, COMPOSITES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mechanics of Composite Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1007/s11029-024-10171-9","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATERIALS SCIENCE, COMPOSITES","Score":null,"Total":0}
Deflection Behaviour of Hybrid Composite Shell Panels Under Dynamic Loadings
Dynamic behavior of hybrid composite shallow shell panels was analyzed utilizing a high-order shear deformation theory (HOSDT) in conjunction with the finite-element method (FEM). To enhance the suitability of plant-fiber composites and to use them as substitutes for pure synthetic-fiber composites, the hybridization of banana-epoxy and glass-epoxy composites was performed, and different sets of hybrid composites were prepared by altering the layers of glass and banana fibers. The elastic constants of these composites were evaluated experimentally and utilized in the further numerical investigation. Simultaneously, a mathematical formulation was developed based on a HOSDT and the FEM. The governing equation of a transient analysis was derived using the Hamilton’s principle and Newmark’s direct integration scheme to get responses in the time domain. First, the consistency of the present model was checked via an element convergence test, and the accuracy of the model was established by comparing the transient responses obtained from the current model with those of published data. Afterwards, different parametric investigations were carried out to explore the influence of the curvature ratio, shell geometry, hybridization, end conditions, and loading rate on the time-dependent responses of the composites.
期刊介绍:
Mechanics of Composite Materials is a peer-reviewed international journal that encourages publication of original experimental and theoretical research on the mechanical properties of composite materials and their constituents including, but not limited to:
damage, failure, fatigue, and long-term strength;
methods of optimum design of materials and structures;
prediction of long-term properties and aging problems;
nondestructive testing;
mechanical aspects of technology;
mechanics of nanocomposites;
mechanics of biocomposites;
composites in aerospace and wind-power engineering;
composites in civil engineering and infrastructure
and other composites applications.