Hong Yin, Wanchun Zhao, Tingting Wang, P. G. Ranjith, Chundi Feng, Wensong Wang
{"title":"基于声发射的洛德角对岩石破坏过程影响的实验研究","authors":"Hong Yin, Wanchun Zhao, Tingting Wang, P. G. Ranjith, Chundi Feng, Wensong Wang","doi":"10.1007/s40948-024-00769-7","DOIUrl":null,"url":null,"abstract":"<p>The laws of acoustic emission (AE) before and during rock failure are different under different stress states. In this article, a new multi-functional true triaxial geophysical (TTG) apparatus was applied to analyze the AE law of sandstone under different stress paths. The results show that (1) with the increase of Lode angle, the tensile fractures in the sandstone increase initially, followed by a decrease. The number of AE decreases initially, followed by an increase, while the average energy of AE signal increases initially, followed by a decrease. (2) During the loading process, the IB values of rock can be divided into wave type, band type and mixed type, which represent crack propagation process driven by external force, self-driving and mixed driving. It can provide a basis for early warning of underground engineering construction disasters. (3) The variation characteristics of RA and AF in rock failure process show the corresponding relationship with IB value. The RA value corresponding to the IB value of band, wave and distribution type distribution mainly concentrated around 0.05, 0.03 and widely distributed, respectively. According to the value of RA, the types of cracks show different characteristics under different driving forces. (4) With the increase of Lode angle, the failure types of rocks change from single oblique fracture (− 30°) to double-X-type fracture (10°), and finally changes to single-X-type fracture when Lode angle is 30°. The fracture angle of rock decreases initially, followed by an increase with the increase of Lode angle. Therefore, it is important to explore the AE law of rock failure process under different stress states for the early warning of underground engineering construction disasters, and can provide a guidance for the application of human underground space.</p>","PeriodicalId":12813,"journal":{"name":"Geomechanics and Geophysics for Geo-Energy and Geo-Resources","volume":"2015 1","pages":""},"PeriodicalIF":3.9000,"publicationDate":"2024-02-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"An experimental study of Lode angle impact on the rock failure procession based on acoustic emission\",\"authors\":\"Hong Yin, Wanchun Zhao, Tingting Wang, P. G. Ranjith, Chundi Feng, Wensong Wang\",\"doi\":\"10.1007/s40948-024-00769-7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The laws of acoustic emission (AE) before and during rock failure are different under different stress states. In this article, a new multi-functional true triaxial geophysical (TTG) apparatus was applied to analyze the AE law of sandstone under different stress paths. The results show that (1) with the increase of Lode angle, the tensile fractures in the sandstone increase initially, followed by a decrease. The number of AE decreases initially, followed by an increase, while the average energy of AE signal increases initially, followed by a decrease. (2) During the loading process, the IB values of rock can be divided into wave type, band type and mixed type, which represent crack propagation process driven by external force, self-driving and mixed driving. It can provide a basis for early warning of underground engineering construction disasters. (3) The variation characteristics of RA and AF in rock failure process show the corresponding relationship with IB value. The RA value corresponding to the IB value of band, wave and distribution type distribution mainly concentrated around 0.05, 0.03 and widely distributed, respectively. According to the value of RA, the types of cracks show different characteristics under different driving forces. (4) With the increase of Lode angle, the failure types of rocks change from single oblique fracture (− 30°) to double-X-type fracture (10°), and finally changes to single-X-type fracture when Lode angle is 30°. The fracture angle of rock decreases initially, followed by an increase with the increase of Lode angle. Therefore, it is important to explore the AE law of rock failure process under different stress states for the early warning of underground engineering construction disasters, and can provide a guidance for the application of human underground space.</p>\",\"PeriodicalId\":12813,\"journal\":{\"name\":\"Geomechanics and Geophysics for Geo-Energy and Geo-Resources\",\"volume\":\"2015 1\",\"pages\":\"\"},\"PeriodicalIF\":3.9000,\"publicationDate\":\"2024-02-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Geomechanics and Geophysics for Geo-Energy and Geo-Resources\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1007/s40948-024-00769-7\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENERGY & FUELS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Geomechanics and Geophysics for Geo-Energy and Geo-Resources","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s40948-024-00769-7","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0
摘要
在不同的应力状态下,岩石破坏前和破坏过程中的声发射(AE)规律是不同的。本文应用新型多功能真三轴地球物理(TTG)仪器分析了砂岩在不同应力路径下的声发射规律。结果表明:(1) 随着 Lode 角的增大,砂岩中的拉伸裂缝最初增多,随后减少。AE 信号的数量先减少后增加,AE 信号的平均能量先增加后减少。(2)在加载过程中,岩石的 IB 值可分为波型、带型和混合型,分别代表外力驱动、自驱动和混合驱动的裂纹扩展过程。可为地下工程施工灾害预警提供依据。(3) 岩石破坏过程中 RA 和 AF 的变化特征显示了与 IB 值的对应关系。带状、波状和分布型分布的IB值所对应的RA值分别主要集中在0.05、0.03左右,分布广泛。根据 RA 值的不同,裂缝类型在不同的驱动力下表现出不同的特征。(4)随着洛德角的增大,岩石的破坏类型由单斜向断裂(-30°)变为双 X 型断裂(10°),当洛德角为 30°时,最终变为单 X 型断裂。随着 Lode 角的增大,岩石的断裂角开始减小,随后增大。因此,探索不同应力状态下岩石破坏过程的 AE 规律,对于地下工程建设灾害的预警具有重要意义,并可为人类地下空间的应用提供指导。
An experimental study of Lode angle impact on the rock failure procession based on acoustic emission
The laws of acoustic emission (AE) before and during rock failure are different under different stress states. In this article, a new multi-functional true triaxial geophysical (TTG) apparatus was applied to analyze the AE law of sandstone under different stress paths. The results show that (1) with the increase of Lode angle, the tensile fractures in the sandstone increase initially, followed by a decrease. The number of AE decreases initially, followed by an increase, while the average energy of AE signal increases initially, followed by a decrease. (2) During the loading process, the IB values of rock can be divided into wave type, band type and mixed type, which represent crack propagation process driven by external force, self-driving and mixed driving. It can provide a basis for early warning of underground engineering construction disasters. (3) The variation characteristics of RA and AF in rock failure process show the corresponding relationship with IB value. The RA value corresponding to the IB value of band, wave and distribution type distribution mainly concentrated around 0.05, 0.03 and widely distributed, respectively. According to the value of RA, the types of cracks show different characteristics under different driving forces. (4) With the increase of Lode angle, the failure types of rocks change from single oblique fracture (− 30°) to double-X-type fracture (10°), and finally changes to single-X-type fracture when Lode angle is 30°. The fracture angle of rock decreases initially, followed by an increase with the increase of Lode angle. Therefore, it is important to explore the AE law of rock failure process under different stress states for the early warning of underground engineering construction disasters, and can provide a guidance for the application of human underground space.
期刊介绍:
This journal offers original research, new developments, and case studies in geomechanics and geophysics, focused on energy and resources in Earth’s subsurface. Covers theory, experimental results, numerical methods, modeling, engineering, technology and more.