{"title":"与硅光子技术兼容的电信带量子点,用于光子量子应用","authors":"Ryota Katsumi, Yasutomo Ota, Mohamed Benyoucef","doi":"10.1002/qute.202300423","DOIUrl":null,"url":null,"abstract":"Silicon photonics is promising for quantum photonics applications owing to its large-scale and high-performance circuitry enabled by complementary-metal-oxide-semiconductor fabrication processes. However, there is a lack of bright single-photon sources (SPSs) capable of deterministic operation on Si platforms, which largely limits their applications. To this end, on-Si integration of high-performance solid-state quantum emitters, such as semiconductor quantum dots (QDs), is greatly desired. In particular, it is preferable to integrate SPSs emitting at telecom wavelengths for fully leveraging the power of silicon photonics, including efficient chip-to-fiber coupling. In this review, recent progress and challenges in the integration of telecom QD SPSs onto silicon photonic platforms are discussed.","PeriodicalId":501028,"journal":{"name":"Advanced Quantum Technologies","volume":"41 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-02-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Telecom-Band Quantum Dots Compatible with Silicon Photonics for Photonic Quantum Applications\",\"authors\":\"Ryota Katsumi, Yasutomo Ota, Mohamed Benyoucef\",\"doi\":\"10.1002/qute.202300423\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Silicon photonics is promising for quantum photonics applications owing to its large-scale and high-performance circuitry enabled by complementary-metal-oxide-semiconductor fabrication processes. However, there is a lack of bright single-photon sources (SPSs) capable of deterministic operation on Si platforms, which largely limits their applications. To this end, on-Si integration of high-performance solid-state quantum emitters, such as semiconductor quantum dots (QDs), is greatly desired. In particular, it is preferable to integrate SPSs emitting at telecom wavelengths for fully leveraging the power of silicon photonics, including efficient chip-to-fiber coupling. In this review, recent progress and challenges in the integration of telecom QD SPSs onto silicon photonic platforms are discussed.\",\"PeriodicalId\":501028,\"journal\":{\"name\":\"Advanced Quantum Technologies\",\"volume\":\"41 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-02-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advanced Quantum Technologies\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1002/qute.202300423\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Quantum Technologies","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1002/qute.202300423","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Telecom-Band Quantum Dots Compatible with Silicon Photonics for Photonic Quantum Applications
Silicon photonics is promising for quantum photonics applications owing to its large-scale and high-performance circuitry enabled by complementary-metal-oxide-semiconductor fabrication processes. However, there is a lack of bright single-photon sources (SPSs) capable of deterministic operation on Si platforms, which largely limits their applications. To this end, on-Si integration of high-performance solid-state quantum emitters, such as semiconductor quantum dots (QDs), is greatly desired. In particular, it is preferable to integrate SPSs emitting at telecom wavelengths for fully leveraging the power of silicon photonics, including efficient chip-to-fiber coupling. In this review, recent progress and challenges in the integration of telecom QD SPSs onto silicon photonic platforms are discussed.