{"title":"球形和超球形数据拟合优度测试的统一方法","authors":"Bruno Ebner, Norbert Henze, Simos Meintanis","doi":"10.1007/s00362-024-01529-1","DOIUrl":null,"url":null,"abstract":"<p>We propose a general and relatively simple method to construct goodness-of-fit tests on the sphere and the hypersphere. The method is based on the characterization of probability distributions via their characteristic function, and it leads to test criteria that are convenient regarding applications and consistent against arbitrary deviations from the model under test. We emphasize goodness-of-fit tests for spherical distributions due to their importance in applications and the relative scarcity of available methods.</p>","PeriodicalId":51166,"journal":{"name":"Statistical Papers","volume":"2 1","pages":""},"PeriodicalIF":1.2000,"publicationDate":"2024-02-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A unified approach to goodness-of-fit testing for spherical and hyperspherical data\",\"authors\":\"Bruno Ebner, Norbert Henze, Simos Meintanis\",\"doi\":\"10.1007/s00362-024-01529-1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>We propose a general and relatively simple method to construct goodness-of-fit tests on the sphere and the hypersphere. The method is based on the characterization of probability distributions via their characteristic function, and it leads to test criteria that are convenient regarding applications and consistent against arbitrary deviations from the model under test. We emphasize goodness-of-fit tests for spherical distributions due to their importance in applications and the relative scarcity of available methods.</p>\",\"PeriodicalId\":51166,\"journal\":{\"name\":\"Statistical Papers\",\"volume\":\"2 1\",\"pages\":\"\"},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2024-02-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Statistical Papers\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s00362-024-01529-1\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"STATISTICS & PROBABILITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Statistical Papers","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s00362-024-01529-1","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
A unified approach to goodness-of-fit testing for spherical and hyperspherical data
We propose a general and relatively simple method to construct goodness-of-fit tests on the sphere and the hypersphere. The method is based on the characterization of probability distributions via their characteristic function, and it leads to test criteria that are convenient regarding applications and consistent against arbitrary deviations from the model under test. We emphasize goodness-of-fit tests for spherical distributions due to their importance in applications and the relative scarcity of available methods.
期刊介绍:
The journal Statistical Papers addresses itself to all persons and organizations that have to deal with statistical methods in their own field of work. It attempts to provide a forum for the presentation and critical assessment of statistical methods, in particular for the discussion of their methodological foundations as well as their potential applications. Methods that have broad applications will be preferred. However, special attention is given to those statistical methods which are relevant to the economic and social sciences. In addition to original research papers, readers will find survey articles, short notes, reports on statistical software, problem section, and book reviews.