{"title":"对发生化学反应的可压缩湍流平面射流进行大涡模拟和拉格朗日混合模拟","authors":"Jiabao Xing, Tomoaki Watanabe, Koji Nagata","doi":"10.1002/fld.5273","DOIUrl":null,"url":null,"abstract":"<p>Large eddy simulation (LES) coupled with Lagrangian particle simulation (LPS) is applied to investigate high-speed turbulent reacting flows. Here, LES solves a velocity field while LPS solves scalar transport equations with notional particles. Although LPS does not require sub-grid scale models for chemical source terms, molecular diffusion has to be modeled by a so-called mixing model, for which a mixing volume model (MVM), that is originally proposed for an inert scalar in incompressible flow, is extended to reactive scalars in compressible flows. The extended model is based on a relaxation process toward the average of nearby notional particles and assumes a common mixing timescale for all species. LES/LPS with the MVM is applied to a temporally-evolving compressible turbulent planar jet with an isothermal reaction and is tested by comparing the results with direct numerical simulation (DNS). The results show that LES/LPS well predicts the statistics of mass fractions. As the jet Mach number increases, the reaction progress delays due to the delayed jet development. This Mach number dependence is also well reproduced in LES/LPS. The mean molecular diffusion term of the product calculated as a function of its mass fraction also agrees well between LES/LPS and DNS. An important parameter for the MVM is the distance among particles, for which the requirement for accurate prediction is presented for the present test case. LES/LPS with the MVM is expected to be a promising method for investigating compressible turbulent reactive flows at a moderate computational cost.</p>","PeriodicalId":50348,"journal":{"name":"International Journal for Numerical Methods in Fluids","volume":"96 6","pages":"962-990"},"PeriodicalIF":1.7000,"publicationDate":"2024-02-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Hybrid large eddy simulation and Lagrangian simulation of a compressible turbulent planar jet with a chemical reaction\",\"authors\":\"Jiabao Xing, Tomoaki Watanabe, Koji Nagata\",\"doi\":\"10.1002/fld.5273\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Large eddy simulation (LES) coupled with Lagrangian particle simulation (LPS) is applied to investigate high-speed turbulent reacting flows. Here, LES solves a velocity field while LPS solves scalar transport equations with notional particles. Although LPS does not require sub-grid scale models for chemical source terms, molecular diffusion has to be modeled by a so-called mixing model, for which a mixing volume model (MVM), that is originally proposed for an inert scalar in incompressible flow, is extended to reactive scalars in compressible flows. The extended model is based on a relaxation process toward the average of nearby notional particles and assumes a common mixing timescale for all species. LES/LPS with the MVM is applied to a temporally-evolving compressible turbulent planar jet with an isothermal reaction and is tested by comparing the results with direct numerical simulation (DNS). The results show that LES/LPS well predicts the statistics of mass fractions. As the jet Mach number increases, the reaction progress delays due to the delayed jet development. This Mach number dependence is also well reproduced in LES/LPS. The mean molecular diffusion term of the product calculated as a function of its mass fraction also agrees well between LES/LPS and DNS. An important parameter for the MVM is the distance among particles, for which the requirement for accurate prediction is presented for the present test case. LES/LPS with the MVM is expected to be a promising method for investigating compressible turbulent reactive flows at a moderate computational cost.</p>\",\"PeriodicalId\":50348,\"journal\":{\"name\":\"International Journal for Numerical Methods in Fluids\",\"volume\":\"96 6\",\"pages\":\"962-990\"},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2024-02-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal for Numerical Methods in Fluids\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/fld.5273\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal for Numerical Methods in Fluids","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/fld.5273","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
Hybrid large eddy simulation and Lagrangian simulation of a compressible turbulent planar jet with a chemical reaction
Large eddy simulation (LES) coupled with Lagrangian particle simulation (LPS) is applied to investigate high-speed turbulent reacting flows. Here, LES solves a velocity field while LPS solves scalar transport equations with notional particles. Although LPS does not require sub-grid scale models for chemical source terms, molecular diffusion has to be modeled by a so-called mixing model, for which a mixing volume model (MVM), that is originally proposed for an inert scalar in incompressible flow, is extended to reactive scalars in compressible flows. The extended model is based on a relaxation process toward the average of nearby notional particles and assumes a common mixing timescale for all species. LES/LPS with the MVM is applied to a temporally-evolving compressible turbulent planar jet with an isothermal reaction and is tested by comparing the results with direct numerical simulation (DNS). The results show that LES/LPS well predicts the statistics of mass fractions. As the jet Mach number increases, the reaction progress delays due to the delayed jet development. This Mach number dependence is also well reproduced in LES/LPS. The mean molecular diffusion term of the product calculated as a function of its mass fraction also agrees well between LES/LPS and DNS. An important parameter for the MVM is the distance among particles, for which the requirement for accurate prediction is presented for the present test case. LES/LPS with the MVM is expected to be a promising method for investigating compressible turbulent reactive flows at a moderate computational cost.
期刊介绍:
The International Journal for Numerical Methods in Fluids publishes refereed papers describing significant developments in computational methods that are applicable to scientific and engineering problems in fluid mechanics, fluid dynamics, micro and bio fluidics, and fluid-structure interaction. Numerical methods for solving ancillary equations, such as transport and advection and diffusion, are also relevant. The Editors encourage contributions in the areas of multi-physics, multi-disciplinary and multi-scale problems involving fluid subsystems, verification and validation, uncertainty quantification, and model reduction.
Numerical examples that illustrate the described methods or their accuracy are in general expected. Discussions of papers already in print are also considered. However, papers dealing strictly with applications of existing methods or dealing with areas of research that are not deemed to be cutting edge by the Editors will not be considered for review.
The journal publishes full-length papers, which should normally be less than 25 journal pages in length. Two-part papers are discouraged unless considered necessary by the Editors.