{"title":"钴(II)和铜(II)浸出过程中机器学习方法(人工神经网络)和收缩核心模型的应用。","authors":"Machodi Mathaba, JeanClaude Banza","doi":"10.1080/10934529.2024.2320600","DOIUrl":null,"url":null,"abstract":"<p><p>The leaching laboratory experiment uses the artificial neural network (ANN) to predict and evaluate copper and cobalt recovery. This study aimed to evaluate the efficacy of using the shrinking core model in conjunction with an artificial neural network (ANN) as part of a machine learning strategy to improve the leaching process of cobalt (II) and copper (II). The numerous factors in the leaching process, such as acid concentration, leaching time, temperature, soil-to-solution ratio, and stirring speed, are adjusted using an ANN with several layers, feed-forward, and back-propagation learning methods. These variables are in charge of the high cobalt recovery during the reduced sulfuric acid leaching procedure. The ANN algorithm has 10 hidden layers, 5 input variables describing the leaching parameters, and two neurons as output layers corresponding to copper and cobalt leaching recovery. The optimum conditions were found to be acid concentration of 100 g/L, leaching duration 120 min, temperature 55 °C, soil-to-solution ratio of 1:40 g/mL, and stirring speed 300 rpm. The optimized trained neural networks tested, trained, and validated steps are represented by <i>R</i><sup>2</sup> values of 0.94, 0.99, 0.97, and 0.97, respectively, equating to 97.5% copper recovery and 95.4% cobalt recovery.</p>","PeriodicalId":15671,"journal":{"name":"Journal of Environmental Science and Health Part A-toxic\\/hazardous Substances & Environmental Engineering","volume":" ","pages":"25-32"},"PeriodicalIF":1.9000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Application of machine learning approach (artificial neural network) and shrinking core model in cobalt (II) and copper (II) leaching process.\",\"authors\":\"Machodi Mathaba, JeanClaude Banza\",\"doi\":\"10.1080/10934529.2024.2320600\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The leaching laboratory experiment uses the artificial neural network (ANN) to predict and evaluate copper and cobalt recovery. This study aimed to evaluate the efficacy of using the shrinking core model in conjunction with an artificial neural network (ANN) as part of a machine learning strategy to improve the leaching process of cobalt (II) and copper (II). The numerous factors in the leaching process, such as acid concentration, leaching time, temperature, soil-to-solution ratio, and stirring speed, are adjusted using an ANN with several layers, feed-forward, and back-propagation learning methods. These variables are in charge of the high cobalt recovery during the reduced sulfuric acid leaching procedure. The ANN algorithm has 10 hidden layers, 5 input variables describing the leaching parameters, and two neurons as output layers corresponding to copper and cobalt leaching recovery. The optimum conditions were found to be acid concentration of 100 g/L, leaching duration 120 min, temperature 55 °C, soil-to-solution ratio of 1:40 g/mL, and stirring speed 300 rpm. The optimized trained neural networks tested, trained, and validated steps are represented by <i>R</i><sup>2</sup> values of 0.94, 0.99, 0.97, and 0.97, respectively, equating to 97.5% copper recovery and 95.4% cobalt recovery.</p>\",\"PeriodicalId\":15671,\"journal\":{\"name\":\"Journal of Environmental Science and Health Part A-toxic\\\\/hazardous Substances & Environmental Engineering\",\"volume\":\" \",\"pages\":\"25-32\"},\"PeriodicalIF\":1.9000,\"publicationDate\":\"2024-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Environmental Science and Health Part A-toxic\\\\/hazardous Substances & Environmental Engineering\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://doi.org/10.1080/10934529.2024.2320600\",\"RegionNum\":4,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/2/26 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q4\",\"JCRName\":\"ENGINEERING, ENVIRONMENTAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Environmental Science and Health Part A-toxic\\/hazardous Substances & Environmental Engineering","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1080/10934529.2024.2320600","RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/2/26 0:00:00","PubModel":"Epub","JCR":"Q4","JCRName":"ENGINEERING, ENVIRONMENTAL","Score":null,"Total":0}
Application of machine learning approach (artificial neural network) and shrinking core model in cobalt (II) and copper (II) leaching process.
The leaching laboratory experiment uses the artificial neural network (ANN) to predict and evaluate copper and cobalt recovery. This study aimed to evaluate the efficacy of using the shrinking core model in conjunction with an artificial neural network (ANN) as part of a machine learning strategy to improve the leaching process of cobalt (II) and copper (II). The numerous factors in the leaching process, such as acid concentration, leaching time, temperature, soil-to-solution ratio, and stirring speed, are adjusted using an ANN with several layers, feed-forward, and back-propagation learning methods. These variables are in charge of the high cobalt recovery during the reduced sulfuric acid leaching procedure. The ANN algorithm has 10 hidden layers, 5 input variables describing the leaching parameters, and two neurons as output layers corresponding to copper and cobalt leaching recovery. The optimum conditions were found to be acid concentration of 100 g/L, leaching duration 120 min, temperature 55 °C, soil-to-solution ratio of 1:40 g/mL, and stirring speed 300 rpm. The optimized trained neural networks tested, trained, and validated steps are represented by R2 values of 0.94, 0.99, 0.97, and 0.97, respectively, equating to 97.5% copper recovery and 95.4% cobalt recovery.
期刊介绍:
14 issues per year
Abstracted/indexed in: BioSciences Information Service of Biological Abstracts (BIOSIS), CAB ABSTRACTS, CEABA, Chemical Abstracts & Chemical Safety NewsBase, Current Contents/Agriculture, Biology, and Environmental Sciences, Elsevier BIOBASE/Current Awareness in Biological Sciences, EMBASE/Excerpta Medica, Engineering Index/COMPENDEX PLUS, Environment Abstracts, Environmental Periodicals Bibliography & INIST-Pascal/CNRS, National Agriculture Library-AGRICOLA, NIOSHTIC & Pollution Abstracts, PubSCIENCE, Reference Update, Research Alert & Science Citation Index Expanded (SCIE), Water Resources Abstracts and Index Medicus/MEDLINE.