Davis M Gimode, Grace Ochieng, Santosh Deshpande, Eric O Manyasa, Clarisse P Kondombo, Erick O Mikwa, Millicent O Avosa, Josephine Sarah Kunguni, Kahiu Ngugi, Patrick Sheunda, McDonald Bright Jumbo, Damaris A Odeny
{"title":"在非洲育种品系中验证高粱质量控制(QC)标记。","authors":"Davis M Gimode, Grace Ochieng, Santosh Deshpande, Eric O Manyasa, Clarisse P Kondombo, Erick O Mikwa, Millicent O Avosa, Josephine Sarah Kunguni, Kahiu Ngugi, Patrick Sheunda, McDonald Bright Jumbo, Damaris A Odeny","doi":"10.1002/tpg2.20438","DOIUrl":null,"url":null,"abstract":"<p><p>Sorghum [Sorghum bicolor (L.) Moench] is a cereal crop of critical importance in the semi-arid tropics, particularly in Africa where it is second only to maize (Zea mays L.) by area of cultivation. The International Crops Research Institute for the Semi-Arid Tropics sorghum breeding program for Eastern and Southern Africa is the largest in the region and develops improved varieties for target agro-ecologies. Varietal purity and correct confirmation of new crosses are essential for the integrity and efficiency of a breeding program. We used 49 quality control (QC) kompetitive allele-specific PCR single nucleotide polymorphism (SNP) markers to genotype 716 breeding lines. Note that 46 SNPs were polymorphic with the top 10 most informative revealing polymorphism information content (PIC), minor allele frequency (MAF), and observed heterozygosity (H<sub>o</sub>) of 0.37, 0.43, and 0.02, respectively, and explaining 45% of genetic variance within the first two principal components (PC). Thirty-nine markers were highly informative across 16 Burkina Faso breeding lines, out of which the top 10 revealed average PIC, MAF, and H<sub>o</sub> of 0.36, 0.39, and 0.05, respectively. Discriminant analysis of principal components done using top 30 markers separated the breeding lines into five major clusters, three of which were distinct. Six of the top 10 most informative markers successfully confirmed hybridization of crosses between genotypes IESV240, KARIMTAMA1, F6YQ212, and FRAMIDA. A set of 10, 20, and 30 most informative markers are recommended for routine QC applications. Future effort should focus on the deployment of these markers in breeding programs for enhanced genetic gain.</p>","PeriodicalId":49002,"journal":{"name":"Plant Genome","volume":null,"pages":null},"PeriodicalIF":3.9000,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Validation of sorghum quality control (QC) markers across African breeding lines.\",\"authors\":\"Davis M Gimode, Grace Ochieng, Santosh Deshpande, Eric O Manyasa, Clarisse P Kondombo, Erick O Mikwa, Millicent O Avosa, Josephine Sarah Kunguni, Kahiu Ngugi, Patrick Sheunda, McDonald Bright Jumbo, Damaris A Odeny\",\"doi\":\"10.1002/tpg2.20438\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Sorghum [Sorghum bicolor (L.) Moench] is a cereal crop of critical importance in the semi-arid tropics, particularly in Africa where it is second only to maize (Zea mays L.) by area of cultivation. The International Crops Research Institute for the Semi-Arid Tropics sorghum breeding program for Eastern and Southern Africa is the largest in the region and develops improved varieties for target agro-ecologies. Varietal purity and correct confirmation of new crosses are essential for the integrity and efficiency of a breeding program. We used 49 quality control (QC) kompetitive allele-specific PCR single nucleotide polymorphism (SNP) markers to genotype 716 breeding lines. Note that 46 SNPs were polymorphic with the top 10 most informative revealing polymorphism information content (PIC), minor allele frequency (MAF), and observed heterozygosity (H<sub>o</sub>) of 0.37, 0.43, and 0.02, respectively, and explaining 45% of genetic variance within the first two principal components (PC). Thirty-nine markers were highly informative across 16 Burkina Faso breeding lines, out of which the top 10 revealed average PIC, MAF, and H<sub>o</sub> of 0.36, 0.39, and 0.05, respectively. Discriminant analysis of principal components done using top 30 markers separated the breeding lines into five major clusters, three of which were distinct. Six of the top 10 most informative markers successfully confirmed hybridization of crosses between genotypes IESV240, KARIMTAMA1, F6YQ212, and FRAMIDA. A set of 10, 20, and 30 most informative markers are recommended for routine QC applications. Future effort should focus on the deployment of these markers in breeding programs for enhanced genetic gain.</p>\",\"PeriodicalId\":49002,\"journal\":{\"name\":\"Plant Genome\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.9000,\"publicationDate\":\"2024-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Plant Genome\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1002/tpg2.20438\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/2/26 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"GENETICS & HEREDITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Plant Genome","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1002/tpg2.20438","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/2/26 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"GENETICS & HEREDITY","Score":null,"Total":0}
引用次数: 0
摘要
高粱(Sorghum bicolor (L.) Moench)是半干旱热带地区至关重要的谷类作物,尤其是在非洲,其种植面积仅次于玉米(Zea mays L.)。国际半干旱热带作物研究所(International Crops Research Institute for the Semi-Arid Tropics)的东部和南部非洲高粱育种计划是该地区最大的育种计划,主要针对目标农业生态环境开发改良品种。品种纯度和新杂交品种的正确确认对育种计划的完整性和效率至关重要。我们使用 49 个质量控制(QC)竞争性等位基因特异性 PCR 单核苷酸多态性(SNP)标记对 716 个育种品系进行基因分型。其中 46 个 SNP 具有多态性,信息量最大的前 10 个标记的多态性信息含量(PIC)、小等位基因频率(MAF)和观察杂合度(Ho )分别为 0.37、0.43 和 0.02,在前两个主成分(PC)中解释了 45% 的遗传变异。在 16 个布基纳法索育种品系中,有 39 个标记信息量很大,其中前 10 个标记的平均 PIC、MAF 和 Ho 分别为 0.36、0.39 和 0.05。利用前 30 个标记进行的主成分判别分析将育种品系分为五大群,其中三个群是不同的。信息量最大的前 10 个标记中有 6 个成功证实了基因型 IESV240、KARIMTAMA1、F6YQ212 和 FRAMIDA 之间的杂交。建议将一组信息量最大的 10、20 和 30 个标记用于常规质量控制应用。未来的工作重点应是在育种计划中部署这些标记,以提高遗传增益。
Validation of sorghum quality control (QC) markers across African breeding lines.
Sorghum [Sorghum bicolor (L.) Moench] is a cereal crop of critical importance in the semi-arid tropics, particularly in Africa where it is second only to maize (Zea mays L.) by area of cultivation. The International Crops Research Institute for the Semi-Arid Tropics sorghum breeding program for Eastern and Southern Africa is the largest in the region and develops improved varieties for target agro-ecologies. Varietal purity and correct confirmation of new crosses are essential for the integrity and efficiency of a breeding program. We used 49 quality control (QC) kompetitive allele-specific PCR single nucleotide polymorphism (SNP) markers to genotype 716 breeding lines. Note that 46 SNPs were polymorphic with the top 10 most informative revealing polymorphism information content (PIC), minor allele frequency (MAF), and observed heterozygosity (Ho) of 0.37, 0.43, and 0.02, respectively, and explaining 45% of genetic variance within the first two principal components (PC). Thirty-nine markers were highly informative across 16 Burkina Faso breeding lines, out of which the top 10 revealed average PIC, MAF, and Ho of 0.36, 0.39, and 0.05, respectively. Discriminant analysis of principal components done using top 30 markers separated the breeding lines into five major clusters, three of which were distinct. Six of the top 10 most informative markers successfully confirmed hybridization of crosses between genotypes IESV240, KARIMTAMA1, F6YQ212, and FRAMIDA. A set of 10, 20, and 30 most informative markers are recommended for routine QC applications. Future effort should focus on the deployment of these markers in breeding programs for enhanced genetic gain.
期刊介绍:
The Plant Genome publishes original research investigating all aspects of plant genomics. Technical breakthroughs reporting improvements in the efficiency and speed of acquiring and interpreting plant genomics data are welcome. The editorial board gives preference to novel reports that use innovative genomic applications that advance our understanding of plant biology that may have applications to crop improvement. The journal also publishes invited review articles and perspectives that offer insight and commentary on recent advances in genomics and their potential for agronomic improvement.