基于配体的 GABA 类似物新杂环亚胺药物设计:发现新 GABA-AT 抑制剂的分子对接方法。

Bijo Mathew, Githa Elizabeth Mathew, Jerad Suresh, Dhasthakeer Usman, Puthucode Natarajan Shiva Subramanyan, Kallivalappil Fathima Safna
{"title":"基于配体的 GABA 类似物新杂环亚胺药物设计:发现新 GABA-AT 抑制剂的分子对接方法。","authors":"Bijo Mathew, Githa Elizabeth Mathew, Jerad Suresh, Dhasthakeer Usman, Puthucode Natarajan Shiva Subramanyan, Kallivalappil Fathima Safna","doi":"","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Degradation of the inhibitory neurotransmitter γ-aminobutyric acid (GABA) is mainly catalysed by GABA aminotransferase (GABA-AT), excessive activity of which leads to convulsions. Inhibition of GABA-AT increases the concentration of GABA and can terminate the convulsions. Several studies have revealed that GABA analogues could be the outstanding scaffolds for the design of potent inhibitors of GABA-AT. The poor ability of GABA analogues to cross the blood-brain barrier (BBB), always produces low therapeutic index. However, Vigabatrin, a mechanism-based inhibitor of GABA-AT, is currently approved treatment of epilepsy, but it has harmful side effects, leaving a need for improved GABA-AT inactivators.</p><p><strong>Experimental design: </strong>In our present in silico investigation, AutoDock 4.2,-based on Lamarckian genetic algorithm was employed for virtual screen of a compound library with 35 entries (Schiff's bases of GABA) in search for novel and selective inhibitors of GABA-AT.</p><p><strong>Results: </strong>By means of flexible type of molecular docking, we proposed that these designed molecules could successfully bind into the active pocket of GABA-AT with good predicted affinities in comparison to standard vigabatrin. Among the designed analogues, HIG18, HIG28 and HIG30 showed significant binding free energy of -10.25, -9.88 and -9.31 kcal/mol with predicted inhibitory constant values of 0.03, 0.05 and 0.15 µM respectively.</p><p><strong>Conclusion: </strong>Using ligand-based drug design, we proposed that electron withdrawing phenyl substituted heterocyclic imines of GABA could be considered as promising structures for synthesis and testing of new GABA-AT inhibitors from this class. We hypothesize that novel GABA analogues with an azomethine linkage incorporated with heterocyclic system can have increased affinity and more lipophilic character that would provide a probability of having less toxic effect in the therapy of convulsions.</p>","PeriodicalId":93930,"journal":{"name":"Central nervous system agents in medicinal chemistry","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2016-01-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Ligand based drug design of new heterocyclic imines of GABA analogues: A molecular docking approach for the discovery of new GABA-AT inhibitors.\",\"authors\":\"Bijo Mathew, Githa Elizabeth Mathew, Jerad Suresh, Dhasthakeer Usman, Puthucode Natarajan Shiva Subramanyan, Kallivalappil Fathima Safna\",\"doi\":\"\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>Degradation of the inhibitory neurotransmitter γ-aminobutyric acid (GABA) is mainly catalysed by GABA aminotransferase (GABA-AT), excessive activity of which leads to convulsions. Inhibition of GABA-AT increases the concentration of GABA and can terminate the convulsions. Several studies have revealed that GABA analogues could be the outstanding scaffolds for the design of potent inhibitors of GABA-AT. The poor ability of GABA analogues to cross the blood-brain barrier (BBB), always produces low therapeutic index. However, Vigabatrin, a mechanism-based inhibitor of GABA-AT, is currently approved treatment of epilepsy, but it has harmful side effects, leaving a need for improved GABA-AT inactivators.</p><p><strong>Experimental design: </strong>In our present in silico investigation, AutoDock 4.2,-based on Lamarckian genetic algorithm was employed for virtual screen of a compound library with 35 entries (Schiff's bases of GABA) in search for novel and selective inhibitors of GABA-AT.</p><p><strong>Results: </strong>By means of flexible type of molecular docking, we proposed that these designed molecules could successfully bind into the active pocket of GABA-AT with good predicted affinities in comparison to standard vigabatrin. Among the designed analogues, HIG18, HIG28 and HIG30 showed significant binding free energy of -10.25, -9.88 and -9.31 kcal/mol with predicted inhibitory constant values of 0.03, 0.05 and 0.15 µM respectively.</p><p><strong>Conclusion: </strong>Using ligand-based drug design, we proposed that electron withdrawing phenyl substituted heterocyclic imines of GABA could be considered as promising structures for synthesis and testing of new GABA-AT inhibitors from this class. We hypothesize that novel GABA analogues with an azomethine linkage incorporated with heterocyclic system can have increased affinity and more lipophilic character that would provide a probability of having less toxic effect in the therapy of convulsions.</p>\",\"PeriodicalId\":93930,\"journal\":{\"name\":\"Central nervous system agents in medicinal chemistry\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-01-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Central nervous system agents in medicinal chemistry\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Central nervous system agents in medicinal chemistry","FirstCategoryId":"1085","ListUrlMain":"","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

背景:抑制性神经递质γ-氨基丁酸(GABA)的降解主要由GABA氨基转移酶(GABA-AT)催化,其活性过高会导致抽搐。抑制 GABA-AT 可增加 GABA 的浓度,从而终止抽搐。多项研究表明,GABA 类似物可能是设计 GABA-AT 强效抑制剂的理想支架。GABA 类似物通过血脑屏障(BBB)的能力较差,因此治疗指数一直较低。然而,基于机制的 GABA-AT 抑制剂 Vigabatrin 目前已被批准用于治疗癫痫,但它具有有害的副作用,因此需要改进 GABA-AT 灭活剂:实验设计:在我们目前的硅学研究中,我们采用了基于拉马克遗传算法的 AutoDock 4.2 对包含 35 个条目(GABA 的希夫碱)的化合物库进行虚拟筛选,以寻找新型的 GABA-AT 选择性抑制剂:结果:通过灵活的分子对接,我们提出这些设计的分子可以成功地结合到 GABA-AT 的活性口袋中,与标准的维加巴曲林相比具有良好的预测亲和力。在所设计的类似物中,HIG18、HIG28和HIG30的结合自由能分别为-10.25、-9.88和-9.31 kcal/mol,预测抑制常数分别为0.03、0.05和0.15 µM:通过基于配体的药物设计,我们提出 GABA 的取电子苯基取代杂环亚胺可作为合成和测试该类新 GABA-AT 抑制剂的理想结构。我们假设,与杂环系统结合在一起的偶氮甲基连接的新型 GABA 类似物可以增加亲和力和亲油性,从而有可能在治疗惊厥方面产生较小的毒性作用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Ligand based drug design of new heterocyclic imines of GABA analogues: A molecular docking approach for the discovery of new GABA-AT inhibitors.

Background: Degradation of the inhibitory neurotransmitter γ-aminobutyric acid (GABA) is mainly catalysed by GABA aminotransferase (GABA-AT), excessive activity of which leads to convulsions. Inhibition of GABA-AT increases the concentration of GABA and can terminate the convulsions. Several studies have revealed that GABA analogues could be the outstanding scaffolds for the design of potent inhibitors of GABA-AT. The poor ability of GABA analogues to cross the blood-brain barrier (BBB), always produces low therapeutic index. However, Vigabatrin, a mechanism-based inhibitor of GABA-AT, is currently approved treatment of epilepsy, but it has harmful side effects, leaving a need for improved GABA-AT inactivators.

Experimental design: In our present in silico investigation, AutoDock 4.2,-based on Lamarckian genetic algorithm was employed for virtual screen of a compound library with 35 entries (Schiff's bases of GABA) in search for novel and selective inhibitors of GABA-AT.

Results: By means of flexible type of molecular docking, we proposed that these designed molecules could successfully bind into the active pocket of GABA-AT with good predicted affinities in comparison to standard vigabatrin. Among the designed analogues, HIG18, HIG28 and HIG30 showed significant binding free energy of -10.25, -9.88 and -9.31 kcal/mol with predicted inhibitory constant values of 0.03, 0.05 and 0.15 µM respectively.

Conclusion: Using ligand-based drug design, we proposed that electron withdrawing phenyl substituted heterocyclic imines of GABA could be considered as promising structures for synthesis and testing of new GABA-AT inhibitors from this class. We hypothesize that novel GABA analogues with an azomethine linkage incorporated with heterocyclic system can have increased affinity and more lipophilic character that would provide a probability of having less toxic effect in the therapy of convulsions.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Antidepressant Potential of Hispidulin Present in S. barbata D. Don: Mechanistic Insights through Neurochemical and Behavioral Assessments. Identification of Phytoconstituents from Natural Product Database as SIRT2 Inhibitors for Potential Role in Alzheimer's Disease: An In-Silico Screening. Thiazolidine-4-one Analogues: Synthesis, In-Silico Molecular Modeling, and In-vivo Estimation for Anticonvulsant Potential. Novel Emerging Targets Identification in Reducing Risk of Alzheimer's Disease. A Brief Review on Caenorhabditis elegans Role in Modelling Neurodegenerative Disease.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1