Lin Fan , Jiahe Liu , Baoyang Ju , Doudou Lou , Yushen Tian
{"title":"基于深度学习的免疫组化解释和分子亚型整体诊断系统","authors":"Lin Fan , Jiahe Liu , Baoyang Ju , Doudou Lou , Yushen Tian","doi":"10.1016/j.neo.2024.100976","DOIUrl":null,"url":null,"abstract":"<div><h3>Background</h3><p>Breast cancer in different molecular subtypes, which is determined by the overexpression rates of human epidermal growth factor receptor 2 (HER2), estrogen receptor (ER), progesterone receptor (PR), and Ki67, exhibit distinct symptom characteristics and sensitivity to different treatment. The immunohistochemical method, one of the most common detecting tools for tumour markers, is heavily relied on artificial judgment and in clinical practice, with an inherent limitation in interpreting stability and operating efficiency. Here, a holistic intelligent breast tumour diagnosis system has been developed for tumour-markeromic analysis, combining the automatic interpretation and clinical suggestion.</p></div><div><h3>Methods</h3><p>The holistic intelligent breast tumour diagnosis system included two main modules. The interpreting modules were constructed based on convolutional neural network, for comprehensively extracting and analyzing the multi-features of immunostaining. Referring to the clinical classification criteria, the interpreting results were encoded in a low-dimensional feature representation in the subtyping module, to efficiently output a holistic detecting result of the critical tumour-markeromic with diagnosis suggestions on molecular subtypes.</p></div><div><h3>Results</h3><p>The overexpression rates of HER2, ER, PR, and Ki67, as well as an effective determination of molecular subtypes were successfully obtained by this diagnosis system, with an average sensitivity of 97.6 % and an average specificity of 96.1 %, among those, the sensitivity and specificity for interpreting HER2 were up to 99.8 % and 96.9 %.</p></div><div><h3>Conclusion</h3><p>The holistic intelligent breast tumour diagnosis system shows improved performance in the interpretation of immunohistochemical images over pathologist-level, which can be expected to overcome the limitations of conventional manual interpretation in efficiency, precision, and repeatability.</p></div>","PeriodicalId":18917,"journal":{"name":"Neoplasia","volume":null,"pages":null},"PeriodicalIF":4.8000,"publicationDate":"2024-02-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1476558624000137/pdfft?md5=a0bfe62e5827eebf3b9ba7233d057374&pid=1-s2.0-S1476558624000137-main.pdf","citationCount":"0","resultStr":"{\"title\":\"A deep learning based holistic diagnosis system for immunohistochemistry interpretation and molecular subtyping\",\"authors\":\"Lin Fan , Jiahe Liu , Baoyang Ju , Doudou Lou , Yushen Tian\",\"doi\":\"10.1016/j.neo.2024.100976\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><h3>Background</h3><p>Breast cancer in different molecular subtypes, which is determined by the overexpression rates of human epidermal growth factor receptor 2 (HER2), estrogen receptor (ER), progesterone receptor (PR), and Ki67, exhibit distinct symptom characteristics and sensitivity to different treatment. The immunohistochemical method, one of the most common detecting tools for tumour markers, is heavily relied on artificial judgment and in clinical practice, with an inherent limitation in interpreting stability and operating efficiency. Here, a holistic intelligent breast tumour diagnosis system has been developed for tumour-markeromic analysis, combining the automatic interpretation and clinical suggestion.</p></div><div><h3>Methods</h3><p>The holistic intelligent breast tumour diagnosis system included two main modules. The interpreting modules were constructed based on convolutional neural network, for comprehensively extracting and analyzing the multi-features of immunostaining. Referring to the clinical classification criteria, the interpreting results were encoded in a low-dimensional feature representation in the subtyping module, to efficiently output a holistic detecting result of the critical tumour-markeromic with diagnosis suggestions on molecular subtypes.</p></div><div><h3>Results</h3><p>The overexpression rates of HER2, ER, PR, and Ki67, as well as an effective determination of molecular subtypes were successfully obtained by this diagnosis system, with an average sensitivity of 97.6 % and an average specificity of 96.1 %, among those, the sensitivity and specificity for interpreting HER2 were up to 99.8 % and 96.9 %.</p></div><div><h3>Conclusion</h3><p>The holistic intelligent breast tumour diagnosis system shows improved performance in the interpretation of immunohistochemical images over pathologist-level, which can be expected to overcome the limitations of conventional manual interpretation in efficiency, precision, and repeatability.</p></div>\",\"PeriodicalId\":18917,\"journal\":{\"name\":\"Neoplasia\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.8000,\"publicationDate\":\"2024-02-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S1476558624000137/pdfft?md5=a0bfe62e5827eebf3b9ba7233d057374&pid=1-s2.0-S1476558624000137-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Neoplasia\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1476558624000137\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Biochemistry, Genetics and Molecular Biology\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neoplasia","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1476558624000137","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Biochemistry, Genetics and Molecular Biology","Score":null,"Total":0}
A deep learning based holistic diagnosis system for immunohistochemistry interpretation and molecular subtyping
Background
Breast cancer in different molecular subtypes, which is determined by the overexpression rates of human epidermal growth factor receptor 2 (HER2), estrogen receptor (ER), progesterone receptor (PR), and Ki67, exhibit distinct symptom characteristics and sensitivity to different treatment. The immunohistochemical method, one of the most common detecting tools for tumour markers, is heavily relied on artificial judgment and in clinical practice, with an inherent limitation in interpreting stability and operating efficiency. Here, a holistic intelligent breast tumour diagnosis system has been developed for tumour-markeromic analysis, combining the automatic interpretation and clinical suggestion.
Methods
The holistic intelligent breast tumour diagnosis system included two main modules. The interpreting modules were constructed based on convolutional neural network, for comprehensively extracting and analyzing the multi-features of immunostaining. Referring to the clinical classification criteria, the interpreting results were encoded in a low-dimensional feature representation in the subtyping module, to efficiently output a holistic detecting result of the critical tumour-markeromic with diagnosis suggestions on molecular subtypes.
Results
The overexpression rates of HER2, ER, PR, and Ki67, as well as an effective determination of molecular subtypes were successfully obtained by this diagnosis system, with an average sensitivity of 97.6 % and an average specificity of 96.1 %, among those, the sensitivity and specificity for interpreting HER2 were up to 99.8 % and 96.9 %.
Conclusion
The holistic intelligent breast tumour diagnosis system shows improved performance in the interpretation of immunohistochemical images over pathologist-level, which can be expected to overcome the limitations of conventional manual interpretation in efficiency, precision, and repeatability.
期刊介绍:
Neoplasia publishes the results of novel investigations in all areas of oncology research. The title Neoplasia was chosen to convey the journal’s breadth, which encompasses the traditional disciplines of cancer research as well as emerging fields and interdisciplinary investigations. Neoplasia is interested in studies describing new molecular and genetic findings relating to the neoplastic phenotype and in laboratory and clinical studies demonstrating creative applications of advances in the basic sciences to risk assessment, prognostic indications, detection, diagnosis, and treatment. In addition to regular Research Reports, Neoplasia also publishes Reviews and Meeting Reports. Neoplasia is committed to ensuring a thorough, fair, and rapid review and publication schedule to further its mission of serving both the scientific and clinical communities by disseminating important data and ideas in cancer research.