基于优化和集合深度学习模型的软件错误定位

IF 1.7 4区 计算机科学 Q3 COMPUTER SCIENCE, SOFTWARE ENGINEERING Journal of Software-Evolution and Process Pub Date : 2024-02-26 DOI:10.1002/smr.2654
Waqas Ali, Lili Bo, Xiaobing Sun, Xiaoxue Wu, Aakash Ali, Ying Wei
{"title":"基于优化和集合深度学习模型的软件错误定位","authors":"Waqas Ali,&nbsp;Lili Bo,&nbsp;Xiaobing Sun,&nbsp;Xiaoxue Wu,&nbsp;Aakash Ali,&nbsp;Ying Wei","doi":"10.1002/smr.2654","DOIUrl":null,"url":null,"abstract":"<p>An automated task for finding the essential buggy files among software projects with the help of a given bug report is termed bug localization. The conventional approaches suffer from the challenges of performing lexical matching. Particularly, the terms utilized for describing the bugs in the bug reports are observed to be irrelevant to the terms used in the source code files. To resolve these problems, we propose an optimized and ensemble deep learning model for software bug localization. These features are reduced by the principle component analysis (PCA). Then, they are selected by the weighted convolutional neural network (CNN) model with the support of the Modified Scatter Probability-based Coyote Optimization Algorithm (MSP-COA). Finally, the optimal features are subjected to the ensemble deep neural network and long short-term memory (DNN-LSTM), with parameter tuning by the MSP-COA. Experimental results show that the proposed approach can achieve higher bug localization accuracy than individual models.</p>","PeriodicalId":48898,"journal":{"name":"Journal of Software-Evolution and Process","volume":"36 8","pages":""},"PeriodicalIF":1.7000,"publicationDate":"2024-02-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Software bug localization based on optimized and ensembled deep learning models\",\"authors\":\"Waqas Ali,&nbsp;Lili Bo,&nbsp;Xiaobing Sun,&nbsp;Xiaoxue Wu,&nbsp;Aakash Ali,&nbsp;Ying Wei\",\"doi\":\"10.1002/smr.2654\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>An automated task for finding the essential buggy files among software projects with the help of a given bug report is termed bug localization. The conventional approaches suffer from the challenges of performing lexical matching. Particularly, the terms utilized for describing the bugs in the bug reports are observed to be irrelevant to the terms used in the source code files. To resolve these problems, we propose an optimized and ensemble deep learning model for software bug localization. These features are reduced by the principle component analysis (PCA). Then, they are selected by the weighted convolutional neural network (CNN) model with the support of the Modified Scatter Probability-based Coyote Optimization Algorithm (MSP-COA). Finally, the optimal features are subjected to the ensemble deep neural network and long short-term memory (DNN-LSTM), with parameter tuning by the MSP-COA. Experimental results show that the proposed approach can achieve higher bug localization accuracy than individual models.</p>\",\"PeriodicalId\":48898,\"journal\":{\"name\":\"Journal of Software-Evolution and Process\",\"volume\":\"36 8\",\"pages\":\"\"},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2024-02-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Software-Evolution and Process\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/smr.2654\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, SOFTWARE ENGINEERING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Software-Evolution and Process","FirstCategoryId":"94","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/smr.2654","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, SOFTWARE ENGINEERING","Score":null,"Total":0}
引用次数: 0

摘要

借助给定的错误报告在软件项目中查找重要错误文件的自动化任务被称为错误定位。传统的方法在进行词汇匹配时会遇到困难。特别是,我们发现错误报告中用于描述错误的术语与源代码文件中使用的术语不相关。为了解决这些问题,我们提出了一种用于软件错误定位的优化和集合深度学习模型。这些特征通过原理成分分析(PCA)进行还原。然后,在基于修正散射概率的丛林狼优化算法(MSP-COA)的支持下,通过加权卷积神经网络(CNN)模型选择这些特征。最后,在 MSP-COA 的参数调整下,将最优特征应用于集合深度神经网络和长短期记忆(DNN-LSTM)。实验结果表明,与单个模型相比,所提出的方法可以实现更高的错误定位精度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Software bug localization based on optimized and ensembled deep learning models

An automated task for finding the essential buggy files among software projects with the help of a given bug report is termed bug localization. The conventional approaches suffer from the challenges of performing lexical matching. Particularly, the terms utilized for describing the bugs in the bug reports are observed to be irrelevant to the terms used in the source code files. To resolve these problems, we propose an optimized and ensemble deep learning model for software bug localization. These features are reduced by the principle component analysis (PCA). Then, they are selected by the weighted convolutional neural network (CNN) model with the support of the Modified Scatter Probability-based Coyote Optimization Algorithm (MSP-COA). Finally, the optimal features are subjected to the ensemble deep neural network and long short-term memory (DNN-LSTM), with parameter tuning by the MSP-COA. Experimental results show that the proposed approach can achieve higher bug localization accuracy than individual models.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Software-Evolution and Process
Journal of Software-Evolution and Process COMPUTER SCIENCE, SOFTWARE ENGINEERING-
自引率
10.00%
发文量
109
期刊最新文献
Issue Information Issue Information A hybrid‐ensemble model for software defect prediction for balanced and imbalanced datasets using AI‐based techniques with feature preservation: SMERKP‐XGB Issue Information LLMs for science: Usage for code generation and data analysis
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1