多变量高斯时间序列的局部相关性推理

IF 2.4 2区 数学 Q2 BIOLOGY Biometrika Pub Date : 2024-02-26 DOI:10.1093/biomet/asae012
A S DiLernia, M Fiecas, L Zhang
{"title":"多变量高斯时间序列的局部相关性推理","authors":"A S DiLernia, M Fiecas, L Zhang","doi":"10.1093/biomet/asae012","DOIUrl":null,"url":null,"abstract":"We derive an asymptotic joint distribution and novel covariance estimator for the partial correlations of a multivariate Gaussian time series given mild regularity conditions. Using our derived asymptotic distribution, we develop a Wald confidence interval and testing procedure for inference of individual partial correlations for time series data. Through simulation we demonstrate that our proposed confidence interval attains higher coverage rates, and our testing procedure attains false positive rates closer to the nominal levels than approaches that assume independent observations when autocorrelation is present.","PeriodicalId":9001,"journal":{"name":"Biometrika","volume":null,"pages":null},"PeriodicalIF":2.4000,"publicationDate":"2024-02-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Inference of partial correlations of a multivariate Gaussian time series\",\"authors\":\"A S DiLernia, M Fiecas, L Zhang\",\"doi\":\"10.1093/biomet/asae012\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We derive an asymptotic joint distribution and novel covariance estimator for the partial correlations of a multivariate Gaussian time series given mild regularity conditions. Using our derived asymptotic distribution, we develop a Wald confidence interval and testing procedure for inference of individual partial correlations for time series data. Through simulation we demonstrate that our proposed confidence interval attains higher coverage rates, and our testing procedure attains false positive rates closer to the nominal levels than approaches that assume independent observations when autocorrelation is present.\",\"PeriodicalId\":9001,\"journal\":{\"name\":\"Biometrika\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.4000,\"publicationDate\":\"2024-02-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biometrika\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1093/biomet/asae012\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biometrika","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1093/biomet/asae012","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

在轻度正则性条件下,我们推导出了多元高斯时间序列偏相关性的渐近联合分布和新型协方差估计器。利用我们推导出的渐近分布,我们开发了一种 Wald 置信区间和测试程序,用于推断时间序列数据的单个偏相关性。通过仿真,我们证明了我们提出的置信区间能获得更高的覆盖率,而我们的测试程序能获得更接近名义水平的假阳性率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Inference of partial correlations of a multivariate Gaussian time series
We derive an asymptotic joint distribution and novel covariance estimator for the partial correlations of a multivariate Gaussian time series given mild regularity conditions. Using our derived asymptotic distribution, we develop a Wald confidence interval and testing procedure for inference of individual partial correlations for time series data. Through simulation we demonstrate that our proposed confidence interval attains higher coverage rates, and our testing procedure attains false positive rates closer to the nominal levels than approaches that assume independent observations when autocorrelation is present.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Biometrika
Biometrika 生物-生物学
CiteScore
5.50
自引率
3.70%
发文量
56
审稿时长
6-12 weeks
期刊介绍: Biometrika is primarily a journal of statistics in which emphasis is placed on papers containing original theoretical contributions of direct or potential value in applications. From time to time, papers in bordering fields are also published.
期刊最新文献
Local Bootstrap for Network Data A Simple Bootstrap for Chatterjee's Rank Correlation Sensitivity models and bounds under sequential unmeasured confounding in longitudinal studies Studies in the history of probability and statistics, LI: the first conditional logistic regression Skip-sampling: subsampling in the frequency domain
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1