Shengcai Wei, Xinyi Gou, Yinli Zhang, Jingjing Cui, Xiaoming Liu, Nan Hong, Weiqi Sheng, Jin Cheng, Yi Wang
{"title":"利用基于 CT 的放射组学预测化疗后结直肠肝转移组织病理学生长模式的转变。","authors":"Shengcai Wei, Xinyi Gou, Yinli Zhang, Jingjing Cui, Xiaoming Liu, Nan Hong, Weiqi Sheng, Jin Cheng, Yi Wang","doi":"10.1007/s10585-024-10275-5","DOIUrl":null,"url":null,"abstract":"<p><p>Chemotherapy alters the prognostic biomarker histopathological growth pattern (HGP) phenotype in colorectal liver metastases (CRLMs) patients. We aimed to develop a CT-based radiomics model to predict the transformation of the HGP phenotype after chemotherapy. This study included 181 patients with 298 CRLMs who underwent preoperative contrast-enhanced CT followed by partial hepatectomy between January 2007 and July 2022 at two institutions. HGPs were categorized as pure desmoplastic HGP (pdHGP) or non-pdHGP. The samples were allocated to training, internal validation, and external validation cohorts comprising 153, 65, and 29 CRLMs, respectively. Radiomics analysis was performed on pre-enhanced, arterial phase, portal venous phase (PVP), and fused images. The model was used to predict prechemotherapy HGPs in 112 CRLMs, and HGP transformation was analysed by comparing these findings with postchemotherapy HGPs determined pathologically. The prevalence of pdHGP was 19.8% (23/116) and 45.8% (70/153) in chemonaïve and postchemotherapy patients, respectively (P < 0.001). The PVP radiomics signature showed good performance in distinguishing pdHGP from non-pdHGPs (AUCs of 0.906, 0.877, and 0.805 in the training, internal validation, and external validation cohorts, respectively). The prevalence of prechemotherapy pdHGP predicted by the radiomics model was 33.0% (37/112), and the prevalence of postchemotherapy pdHGP according to the pathological analysis was 47.3% (53/112; P = 0.029). The transformation of HGP was bidirectional, with 15.2% (17/112) of CRLMs transforming from prechemotherapy pdHGP to postchemotherapy non-pdHGP and 30.4% (34/112) transforming from prechemotherapy non-pdHGP to postchemotherapy pdHGP (P = 0.005). CT-based radiomics method can be used to effectively predict the HGP transformation in chemotherapy-treated CRLM patients, thereby providing a basis for treatment decisions.</p>","PeriodicalId":10267,"journal":{"name":"Clinical & Experimental Metastasis","volume":" ","pages":"143-154"},"PeriodicalIF":4.2000,"publicationDate":"2024-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Prediction of transformation in the histopathological growth pattern of colorectal liver metastases after chemotherapy using CT-based radiomics.\",\"authors\":\"Shengcai Wei, Xinyi Gou, Yinli Zhang, Jingjing Cui, Xiaoming Liu, Nan Hong, Weiqi Sheng, Jin Cheng, Yi Wang\",\"doi\":\"10.1007/s10585-024-10275-5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Chemotherapy alters the prognostic biomarker histopathological growth pattern (HGP) phenotype in colorectal liver metastases (CRLMs) patients. We aimed to develop a CT-based radiomics model to predict the transformation of the HGP phenotype after chemotherapy. This study included 181 patients with 298 CRLMs who underwent preoperative contrast-enhanced CT followed by partial hepatectomy between January 2007 and July 2022 at two institutions. HGPs were categorized as pure desmoplastic HGP (pdHGP) or non-pdHGP. The samples were allocated to training, internal validation, and external validation cohorts comprising 153, 65, and 29 CRLMs, respectively. Radiomics analysis was performed on pre-enhanced, arterial phase, portal venous phase (PVP), and fused images. The model was used to predict prechemotherapy HGPs in 112 CRLMs, and HGP transformation was analysed by comparing these findings with postchemotherapy HGPs determined pathologically. The prevalence of pdHGP was 19.8% (23/116) and 45.8% (70/153) in chemonaïve and postchemotherapy patients, respectively (P < 0.001). The PVP radiomics signature showed good performance in distinguishing pdHGP from non-pdHGPs (AUCs of 0.906, 0.877, and 0.805 in the training, internal validation, and external validation cohorts, respectively). The prevalence of prechemotherapy pdHGP predicted by the radiomics model was 33.0% (37/112), and the prevalence of postchemotherapy pdHGP according to the pathological analysis was 47.3% (53/112; P = 0.029). The transformation of HGP was bidirectional, with 15.2% (17/112) of CRLMs transforming from prechemotherapy pdHGP to postchemotherapy non-pdHGP and 30.4% (34/112) transforming from prechemotherapy non-pdHGP to postchemotherapy pdHGP (P = 0.005). CT-based radiomics method can be used to effectively predict the HGP transformation in chemotherapy-treated CRLM patients, thereby providing a basis for treatment decisions.</p>\",\"PeriodicalId\":10267,\"journal\":{\"name\":\"Clinical & Experimental Metastasis\",\"volume\":\" \",\"pages\":\"143-154\"},\"PeriodicalIF\":4.2000,\"publicationDate\":\"2024-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Clinical & Experimental Metastasis\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1007/s10585-024-10275-5\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/2/28 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q2\",\"JCRName\":\"ONCOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Clinical & Experimental Metastasis","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s10585-024-10275-5","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/2/28 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"ONCOLOGY","Score":null,"Total":0}
Prediction of transformation in the histopathological growth pattern of colorectal liver metastases after chemotherapy using CT-based radiomics.
Chemotherapy alters the prognostic biomarker histopathological growth pattern (HGP) phenotype in colorectal liver metastases (CRLMs) patients. We aimed to develop a CT-based radiomics model to predict the transformation of the HGP phenotype after chemotherapy. This study included 181 patients with 298 CRLMs who underwent preoperative contrast-enhanced CT followed by partial hepatectomy between January 2007 and July 2022 at two institutions. HGPs were categorized as pure desmoplastic HGP (pdHGP) or non-pdHGP. The samples were allocated to training, internal validation, and external validation cohorts comprising 153, 65, and 29 CRLMs, respectively. Radiomics analysis was performed on pre-enhanced, arterial phase, portal venous phase (PVP), and fused images. The model was used to predict prechemotherapy HGPs in 112 CRLMs, and HGP transformation was analysed by comparing these findings with postchemotherapy HGPs determined pathologically. The prevalence of pdHGP was 19.8% (23/116) and 45.8% (70/153) in chemonaïve and postchemotherapy patients, respectively (P < 0.001). The PVP radiomics signature showed good performance in distinguishing pdHGP from non-pdHGPs (AUCs of 0.906, 0.877, and 0.805 in the training, internal validation, and external validation cohorts, respectively). The prevalence of prechemotherapy pdHGP predicted by the radiomics model was 33.0% (37/112), and the prevalence of postchemotherapy pdHGP according to the pathological analysis was 47.3% (53/112; P = 0.029). The transformation of HGP was bidirectional, with 15.2% (17/112) of CRLMs transforming from prechemotherapy pdHGP to postchemotherapy non-pdHGP and 30.4% (34/112) transforming from prechemotherapy non-pdHGP to postchemotherapy pdHGP (P = 0.005). CT-based radiomics method can be used to effectively predict the HGP transformation in chemotherapy-treated CRLM patients, thereby providing a basis for treatment decisions.
期刊介绍:
The Journal''s scope encompasses all aspects of metastasis research, whether laboratory-based, experimental or clinical and therapeutic. It covers such areas as molecular biology, pharmacology, tumor biology, and clinical cancer treatment (with all its subdivisions of surgery, chemotherapy and radio-therapy as well as pathology and epidemiology) insofar as these disciplines are concerned with the Journal''s core subject of metastasis formation, prevention and treatment.