富含 RNA 的细胞外囊泡 1 的治疗潜力:通过生物纳米颗粒传递 RNA 的新一代技术。

IF 12.1 1区 医学 Q1 BIOTECHNOLOGY & APPLIED MICROBIOLOGY Molecular Therapy Pub Date : 2024-09-04 Epub Date: 2024-02-27 DOI:10.1016/j.ymthe.2024.02.025
Muskan Muskan, Pevindu Abeysinghe, Riccardo Cecchin, Heather Branscome, Kevin V Morris, Fatah Kashanchi
{"title":"富含 RNA 的细胞外囊泡 1 的治疗潜力:通过生物纳米颗粒传递 RNA 的新一代技术。","authors":"Muskan Muskan, Pevindu Abeysinghe, Riccardo Cecchin, Heather Branscome, Kevin V Morris, Fatah Kashanchi","doi":"10.1016/j.ymthe.2024.02.025","DOIUrl":null,"url":null,"abstract":"<p><p>Exosomes are extracellular vesicles (EVs) (∼50-150 nm) that have emerged as promising vehicles for therapeutic applications and drug delivery. These membrane-bound particles, released by all actively dividing cells, have the ability to transfer effector molecules, including proteins, RNA, and even DNA, from donor cells to recipient cells, thereby modulating cellular responses. RNA-based therapeutics, including microRNAs, messenger RNAs, long non-coding RNAs, and circular RNAs, hold great potential in controlling gene expression and treating a spectrum of medical conditions. RNAs encapsulated in EVs are protected from extracellular degradation, making them attractive for therapeutic applications. Understanding the intricate biology of cargo loading and transfer within EVs is pivotal to unlocking their therapeutic potential. This review discusses the biogenesis and classification of EVs, methods for loading RNA into EVs, their advantages as drug carriers over synthetic-lipid-based systems, and the potential applications in treating neurodegenerative diseases, cancer, and viral infections. Notably, EVs show promise in delivering RNA cargo across the blood-brain barrier and targeting tumor cells, offering a safe and effective approach to RNA-based therapy in these contexts.</p>","PeriodicalId":19020,"journal":{"name":"Molecular Therapy","volume":null,"pages":null},"PeriodicalIF":12.1000,"publicationDate":"2024-09-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Therapeutic potential of RNA-enriched extracellular vesicles: The next generation in RNA delivery via biogenic nanoparticles.\",\"authors\":\"Muskan Muskan, Pevindu Abeysinghe, Riccardo Cecchin, Heather Branscome, Kevin V Morris, Fatah Kashanchi\",\"doi\":\"10.1016/j.ymthe.2024.02.025\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Exosomes are extracellular vesicles (EVs) (∼50-150 nm) that have emerged as promising vehicles for therapeutic applications and drug delivery. These membrane-bound particles, released by all actively dividing cells, have the ability to transfer effector molecules, including proteins, RNA, and even DNA, from donor cells to recipient cells, thereby modulating cellular responses. RNA-based therapeutics, including microRNAs, messenger RNAs, long non-coding RNAs, and circular RNAs, hold great potential in controlling gene expression and treating a spectrum of medical conditions. RNAs encapsulated in EVs are protected from extracellular degradation, making them attractive for therapeutic applications. Understanding the intricate biology of cargo loading and transfer within EVs is pivotal to unlocking their therapeutic potential. This review discusses the biogenesis and classification of EVs, methods for loading RNA into EVs, their advantages as drug carriers over synthetic-lipid-based systems, and the potential applications in treating neurodegenerative diseases, cancer, and viral infections. Notably, EVs show promise in delivering RNA cargo across the blood-brain barrier and targeting tumor cells, offering a safe and effective approach to RNA-based therapy in these contexts.</p>\",\"PeriodicalId\":19020,\"journal\":{\"name\":\"Molecular Therapy\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":12.1000,\"publicationDate\":\"2024-09-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Molecular Therapy\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1016/j.ymthe.2024.02.025\",\"RegionNum\":1,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/2/27 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"BIOTECHNOLOGY & APPLIED MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Therapy","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1016/j.ymthe.2024.02.025","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/2/27 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

外泌体是一种细胞外囊泡 (EV)(50-150 nm),已成为治疗应用和药物递送的理想载体。这些由所有活跃分裂细胞释放的膜结合颗粒能够将供体细胞中的效应分子(包括蛋白质、RNA 甚至 DNA)转移到受体细胞中,从而调节细胞反应。基于 RNA 的疗法,包括 miRNA、mRNA、lncRNA 和 circRNA,在控制基因表达和治疗各种疾病方面具有巨大潜力。封装在 EV 中的 RNA 可防止细胞外降解,因此对治疗应用很有吸引力。了解 EVs 中货物装载和转移的复杂生物学过程,对于释放其治疗潜力至关重要。本综述讨论了 EVs 的生物发生和分类、将 RNA 装入 EVs 的方法、EVs 作为药物载体优于合成脂质系统的优势,以及在治疗神经退行性疾病、癌症和病毒感染方面的潜在应用。值得注意的是,EVs在通过血脑屏障输送RNA货物和靶向肿瘤细胞方面大有可为,在这些情况下为基于RNA的治疗提供了一种安全有效的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Therapeutic potential of RNA-enriched extracellular vesicles: The next generation in RNA delivery via biogenic nanoparticles.

Exosomes are extracellular vesicles (EVs) (∼50-150 nm) that have emerged as promising vehicles for therapeutic applications and drug delivery. These membrane-bound particles, released by all actively dividing cells, have the ability to transfer effector molecules, including proteins, RNA, and even DNA, from donor cells to recipient cells, thereby modulating cellular responses. RNA-based therapeutics, including microRNAs, messenger RNAs, long non-coding RNAs, and circular RNAs, hold great potential in controlling gene expression and treating a spectrum of medical conditions. RNAs encapsulated in EVs are protected from extracellular degradation, making them attractive for therapeutic applications. Understanding the intricate biology of cargo loading and transfer within EVs is pivotal to unlocking their therapeutic potential. This review discusses the biogenesis and classification of EVs, methods for loading RNA into EVs, their advantages as drug carriers over synthetic-lipid-based systems, and the potential applications in treating neurodegenerative diseases, cancer, and viral infections. Notably, EVs show promise in delivering RNA cargo across the blood-brain barrier and targeting tumor cells, offering a safe and effective approach to RNA-based therapy in these contexts.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Molecular Therapy
Molecular Therapy 医学-生物工程与应用微生物
CiteScore
19.20
自引率
3.20%
发文量
357
审稿时长
3 months
期刊介绍: Molecular Therapy is the leading journal for research in gene transfer, vector development, stem cell manipulation, and therapeutic interventions. It covers a broad spectrum of topics including genetic and acquired disease correction, vaccine development, pre-clinical validation, safety/efficacy studies, and clinical trials. With a focus on advancing genetics, medicine, and biotechnology, Molecular Therapy publishes peer-reviewed research, reviews, and commentaries to showcase the latest advancements in the field. With an impressive impact factor of 12.4 in 2022, it continues to attract top-tier contributions.
期刊最新文献
Engineering a solution for allogeneic CAR-T rejection. Targeting Rap1b signaling cascades with CDNF: Modulating Platelet Activation, Regulating Plasma Oxylipins and Mitigating Reperfusion Injury in stroke. A CD25×TIGIT bispecific antibody induces anti-tumor activity through selective intratumoral Treg cell depletion. A chimeric anti-inflammatory and anti-vascularization immunomodulator prevents high-risk corneal transplantation rejection via ex vivo gene therapy. Case study of CD19-directed chimeric antigen receptor T-cell therapy in a subject with immune-mediate necrotizing myopathy treated in the RESET-Myositis™ phase I/II trial.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1