利用深度学习和合成数据对多相功能性心脏 CT 血管造影进行去噪。

IF 8.1 Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE Radiology-Artificial Intelligence Pub Date : 2024-03-01 DOI:10.1148/ryai.230153
Veit Sandfort, Martin J Willemink, Marina Codari, Domenico Mastrodicasa, Dominik Fleischmann
{"title":"利用深度学习和合成数据对多相功能性心脏 CT 血管造影进行去噪。","authors":"Veit Sandfort, Martin J Willemink, Marina Codari, Domenico Mastrodicasa, Dominik Fleischmann","doi":"10.1148/ryai.230153","DOIUrl":null,"url":null,"abstract":"<p><p>Coronary CT angiography is increasingly used for cardiac diagnosis. Dose modulation techniques can reduce radiation dose, but resulting functional images are noisy and challenging for functional analysis. This retrospective study describes and evaluates a deep learning method for denoising functional cardiac imaging, taking advantage of multiphase information in a three-dimensional convolutional neural network. Coronary CT angiograms (<i>n</i> = 566) were used to derive synthetic data for training. Deep learning-based image denoising was compared with unprocessed images and a standard noise reduction algorithm (block-matching and three-dimensional filtering [BM3D]). Noise and signal-to-noise ratio measurements, as well as expert evaluation of image quality, were performed. To validate the use of the denoised images for cardiac quantification, threshold-based segmentation was performed, and results were compared with manual measurements on unprocessed images. Deep learning-based denoised images showed significantly improved noise compared with standard denoising-based images (SD of left ventricular blood pool, 20.3 HU ± 42.5 [SD] vs 33.4 HU ± 39.8 for deep learning-based image denoising vs BM3D; <i>P</i> < .0001). Expert evaluations of image quality were significantly higher in deep learning-based denoised images compared with standard denoising. Semiautomatic left ventricular size measurements on deep learning-based denoised images showed excellent correlation with expert quantification on unprocessed images (intraclass correlation coefficient, 0.97). Deep learning-based denoising using a three-dimensional approach resulted in excellent denoising performance and facilitated valid automatic processing of cardiac functional imaging. <b>Keywords:</b> Cardiac CT Angiography, Deep Learning, Image Denoising <i>Supplemental material is available for this article.</i> © RSNA, 2024.</p>","PeriodicalId":29787,"journal":{"name":"Radiology-Artificial Intelligence","volume":" ","pages":"e230153"},"PeriodicalIF":8.1000,"publicationDate":"2024-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10982910/pdf/","citationCount":"0","resultStr":"{\"title\":\"Denoising Multiphase Functional Cardiac CT Angiography Using Deep Learning and Synthetic Data.\",\"authors\":\"Veit Sandfort, Martin J Willemink, Marina Codari, Domenico Mastrodicasa, Dominik Fleischmann\",\"doi\":\"10.1148/ryai.230153\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Coronary CT angiography is increasingly used for cardiac diagnosis. Dose modulation techniques can reduce radiation dose, but resulting functional images are noisy and challenging for functional analysis. This retrospective study describes and evaluates a deep learning method for denoising functional cardiac imaging, taking advantage of multiphase information in a three-dimensional convolutional neural network. Coronary CT angiograms (<i>n</i> = 566) were used to derive synthetic data for training. Deep learning-based image denoising was compared with unprocessed images and a standard noise reduction algorithm (block-matching and three-dimensional filtering [BM3D]). Noise and signal-to-noise ratio measurements, as well as expert evaluation of image quality, were performed. To validate the use of the denoised images for cardiac quantification, threshold-based segmentation was performed, and results were compared with manual measurements on unprocessed images. Deep learning-based denoised images showed significantly improved noise compared with standard denoising-based images (SD of left ventricular blood pool, 20.3 HU ± 42.5 [SD] vs 33.4 HU ± 39.8 for deep learning-based image denoising vs BM3D; <i>P</i> < .0001). Expert evaluations of image quality were significantly higher in deep learning-based denoised images compared with standard denoising. Semiautomatic left ventricular size measurements on deep learning-based denoised images showed excellent correlation with expert quantification on unprocessed images (intraclass correlation coefficient, 0.97). Deep learning-based denoising using a three-dimensional approach resulted in excellent denoising performance and facilitated valid automatic processing of cardiac functional imaging. <b>Keywords:</b> Cardiac CT Angiography, Deep Learning, Image Denoising <i>Supplemental material is available for this article.</i> © RSNA, 2024.</p>\",\"PeriodicalId\":29787,\"journal\":{\"name\":\"Radiology-Artificial Intelligence\",\"volume\":\" \",\"pages\":\"e230153\"},\"PeriodicalIF\":8.1000,\"publicationDate\":\"2024-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10982910/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Radiology-Artificial Intelligence\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1148/ryai.230153\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Radiology-Artificial Intelligence","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1148/ryai.230153","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

摘要

"刚刚接受 "的论文经过同行评审,已被接受在《放射学》上发表:人工智能》上发表。这篇文章在以最终版本发表之前,还将经过校对、排版和校对审核。请注意,在制作最终校对稿的过程中,可能会发现影响内容的错误。冠状动脉 CT 血管造影 (CTA) 越来越多地用于心脏诊断。剂量调制技术可减少辐射剂量,但产生的功能图像噪声大,对功能分析具有挑战性。这项回顾性研究介绍并评估了一种用于心脏功能成像去噪的深度学习方法,该方法利用了三维卷积神经网络中的多相信息。冠状动脉 CT 血管造影(n = 566)用于生成合成数据进行训练。基于深度学习的图像去噪(DLID)与未经处理的图像和标准降噪算法(BM3D)进行了比较。对图像质量进行了噪声和信噪比测量以及专家评估。为了验证去噪图像是否可用于心脏量化,进行了基于阈值的分割,并将结果与未处理图像的人工测量结果进行了比较。与基于标准去噪的图像相比,基于深度学习的去噪图像明显改善了噪声(左心室血池的 SD 值为 20.3 ± 42.5 HU,DLID 为 33.4 ± 39.8 HU,BM3D 为 33.4 ± 39.8 HU,P < .0001)。与标准去噪相比,专家对基于深度学习的去噪图像质量的评价明显更高。基于深度学习的去噪图像上的半自动左心室尺寸测量结果与未处理图像上的专家量化结果显示出极好的相关性(类内相关系数为 0.97)。基于深度学习的三维去噪方法具有出色的去噪性能,有助于对心脏功能成像进行有效的自动处理。©RSNA,2024。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Denoising Multiphase Functional Cardiac CT Angiography Using Deep Learning and Synthetic Data.

Coronary CT angiography is increasingly used for cardiac diagnosis. Dose modulation techniques can reduce radiation dose, but resulting functional images are noisy and challenging for functional analysis. This retrospective study describes and evaluates a deep learning method for denoising functional cardiac imaging, taking advantage of multiphase information in a three-dimensional convolutional neural network. Coronary CT angiograms (n = 566) were used to derive synthetic data for training. Deep learning-based image denoising was compared with unprocessed images and a standard noise reduction algorithm (block-matching and three-dimensional filtering [BM3D]). Noise and signal-to-noise ratio measurements, as well as expert evaluation of image quality, were performed. To validate the use of the denoised images for cardiac quantification, threshold-based segmentation was performed, and results were compared with manual measurements on unprocessed images. Deep learning-based denoised images showed significantly improved noise compared with standard denoising-based images (SD of left ventricular blood pool, 20.3 HU ± 42.5 [SD] vs 33.4 HU ± 39.8 for deep learning-based image denoising vs BM3D; P < .0001). Expert evaluations of image quality were significantly higher in deep learning-based denoised images compared with standard denoising. Semiautomatic left ventricular size measurements on deep learning-based denoised images showed excellent correlation with expert quantification on unprocessed images (intraclass correlation coefficient, 0.97). Deep learning-based denoising using a three-dimensional approach resulted in excellent denoising performance and facilitated valid automatic processing of cardiac functional imaging. Keywords: Cardiac CT Angiography, Deep Learning, Image Denoising Supplemental material is available for this article. © RSNA, 2024.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
16.20
自引率
1.00%
发文量
0
期刊介绍: Radiology: Artificial Intelligence is a bi-monthly publication that focuses on the emerging applications of machine learning and artificial intelligence in the field of imaging across various disciplines. This journal is available online and accepts multiple manuscript types, including Original Research, Technical Developments, Data Resources, Review articles, Editorials, Letters to the Editor and Replies, Special Reports, and AI in Brief.
期刊最新文献
A Serial MRI-based Deep Learning Model to Predict Survival in Patients with Locoregionally Advanced Nasopharyngeal Carcinoma. Accuracy of Fully Automated and Human-assisted AI-based CT Quantification of Pleural Effusion Changes after Thoracentesis. Evaluating the Impact of Changes in AI-derived Case Scores over Time on Digital Breast Tomosynthesis Screening Outcomes. NNFit: A Self-Supervised Deep Learning Method for Accelerated Quantification of High- Resolution Short Echo Time MR Spectroscopy Datasets. Posttraining Network Compression for 3D Medical Image Segmentation: Reducing Computational Efforts via Tucker Decomposition.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1