Qi Yang, Ting Yang, Xing Liu, Shengquan Liu, Wei Liu, Liangui Nie, Chun Chu, Jun Yang
{"title":"气体信号分子二氧化硫对甲亢大鼠心脏功能的影响","authors":"Qi Yang, Ting Yang, Xing Liu, Shengquan Liu, Wei Liu, Liangui Nie, Chun Chu, Jun Yang","doi":"10.4196/kjpp.2024.28.2.129","DOIUrl":null,"url":null,"abstract":"<p><p>Sulfur dioxide (SO<sub>2</sub>), a novel endogenous gas signaling molecule, is involved in the regulation of cardiac function. Exerting a key role in progression of hyperthyroidism-induced cardiomyopathy (HTC), myocardial fibrosis is mainly caused by myocardial apoptosis, leading to poor treatment outcomes and prognoses. This study aimed to investigate the effect of SO<sub>2</sub> on the hyperthyroidism-induced myocardial fibrosis and the underlying regulatory mechanisms. Elisa, Masson staining, Western-Blot, transmission electron microscope, and immunofluorescence were employed to evaluate the myocardial interstitial collagen deposition, endoplasmic reticulum stress (ERS), apoptosis, changes in endogenous SO<sub>2</sub>, and Hippo pathways from <i>in vitro</i> and <i>in vivo</i> experiments. The study results indicated that the hyperthyroidism-induced myocardial fibrosis was accompanied by decreased cardiac function, and down-regulated ERS, apoptosis, and endogenous SO<sub>2</sub>-producing enzyme aspartate aminotransferase (AAT)1/2 in cardiac myocytes. In contrast, exogenous SO<sub>2</sub> donors improved cardiac function, reduced myocardial interstitial collagen deposition, up-regulated AAT1/2, antagonized ERS and apoptosis, and inhibited excessive activation of Hippo pathway in hyperthyroid rats. In conclusion, the results herein suggested that SO<sub>2</sub> inhibited the overactivation of the Hippo pathway, antagonized ERS and apoptosis, and alleviated myocardial fibrosis in hyperthyroid rats. Therefore, this study was expected to identify intervention targets and new strategies for prevention and treatment of HTC.</p>","PeriodicalId":54746,"journal":{"name":"Korean Journal of Physiology & Pharmacology","volume":"28 2","pages":"129-143"},"PeriodicalIF":1.6000,"publicationDate":"2024-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10902587/pdf/","citationCount":"0","resultStr":"{\"title\":\"Effects of gas signaling molecule SO<sub>2</sub> in cardiac functions of hyperthyroid rats.\",\"authors\":\"Qi Yang, Ting Yang, Xing Liu, Shengquan Liu, Wei Liu, Liangui Nie, Chun Chu, Jun Yang\",\"doi\":\"10.4196/kjpp.2024.28.2.129\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Sulfur dioxide (SO<sub>2</sub>), a novel endogenous gas signaling molecule, is involved in the regulation of cardiac function. Exerting a key role in progression of hyperthyroidism-induced cardiomyopathy (HTC), myocardial fibrosis is mainly caused by myocardial apoptosis, leading to poor treatment outcomes and prognoses. This study aimed to investigate the effect of SO<sub>2</sub> on the hyperthyroidism-induced myocardial fibrosis and the underlying regulatory mechanisms. Elisa, Masson staining, Western-Blot, transmission electron microscope, and immunofluorescence were employed to evaluate the myocardial interstitial collagen deposition, endoplasmic reticulum stress (ERS), apoptosis, changes in endogenous SO<sub>2</sub>, and Hippo pathways from <i>in vitro</i> and <i>in vivo</i> experiments. The study results indicated that the hyperthyroidism-induced myocardial fibrosis was accompanied by decreased cardiac function, and down-regulated ERS, apoptosis, and endogenous SO<sub>2</sub>-producing enzyme aspartate aminotransferase (AAT)1/2 in cardiac myocytes. In contrast, exogenous SO<sub>2</sub> donors improved cardiac function, reduced myocardial interstitial collagen deposition, up-regulated AAT1/2, antagonized ERS and apoptosis, and inhibited excessive activation of Hippo pathway in hyperthyroid rats. In conclusion, the results herein suggested that SO<sub>2</sub> inhibited the overactivation of the Hippo pathway, antagonized ERS and apoptosis, and alleviated myocardial fibrosis in hyperthyroid rats. Therefore, this study was expected to identify intervention targets and new strategies for prevention and treatment of HTC.</p>\",\"PeriodicalId\":54746,\"journal\":{\"name\":\"Korean Journal of Physiology & Pharmacology\",\"volume\":\"28 2\",\"pages\":\"129-143\"},\"PeriodicalIF\":1.6000,\"publicationDate\":\"2024-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10902587/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Korean Journal of Physiology & Pharmacology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.4196/kjpp.2024.28.2.129\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"PHARMACOLOGY & PHARMACY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Korean Journal of Physiology & Pharmacology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.4196/kjpp.2024.28.2.129","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
引用次数: 0
摘要
二氧化硫(SO2)是一种新型的内源性气体信号分子,参与心脏功能的调节。心肌纤维化是甲亢诱发心肌病(HTC)进展的关键因素,主要由心肌凋亡引起,导致治疗效果和预后不佳。本研究旨在探讨二氧化硫对甲亢诱导的心肌纤维化的影响及其潜在调控机制。采用Elisa、Masson染色、Western-Blot、透射电子显微镜和免疫荧光技术,从体外和体内实验评估心肌间质胶原沉积、内质网应激(ERS)、细胞凋亡、内源性SO2变化和Hippo通路。研究结果表明,甲状腺机能亢进症诱发的心肌纤维化伴随着心脏功能下降,并下调心肌细胞中的ERS、细胞凋亡和内源性SO2产生酶天冬氨酸氨基转移酶(AAT)1/2。相反,外源性 SO2 供体可改善甲亢大鼠的心脏功能,减少心肌间质胶原沉积,上调 AAT1/2,拮抗 ERS 和细胞凋亡,并抑制 Hippo 通路的过度激活。总之,本文的研究结果表明,SO2能抑制Hippo通路的过度激活,拮抗ERS和细胞凋亡,缓解甲亢大鼠的心肌纤维化。因此,这项研究有望为预防和治疗 HTC 找出干预靶点和新策略。
Effects of gas signaling molecule SO2 in cardiac functions of hyperthyroid rats.
Sulfur dioxide (SO2), a novel endogenous gas signaling molecule, is involved in the regulation of cardiac function. Exerting a key role in progression of hyperthyroidism-induced cardiomyopathy (HTC), myocardial fibrosis is mainly caused by myocardial apoptosis, leading to poor treatment outcomes and prognoses. This study aimed to investigate the effect of SO2 on the hyperthyroidism-induced myocardial fibrosis and the underlying regulatory mechanisms. Elisa, Masson staining, Western-Blot, transmission electron microscope, and immunofluorescence were employed to evaluate the myocardial interstitial collagen deposition, endoplasmic reticulum stress (ERS), apoptosis, changes in endogenous SO2, and Hippo pathways from in vitro and in vivo experiments. The study results indicated that the hyperthyroidism-induced myocardial fibrosis was accompanied by decreased cardiac function, and down-regulated ERS, apoptosis, and endogenous SO2-producing enzyme aspartate aminotransferase (AAT)1/2 in cardiac myocytes. In contrast, exogenous SO2 donors improved cardiac function, reduced myocardial interstitial collagen deposition, up-regulated AAT1/2, antagonized ERS and apoptosis, and inhibited excessive activation of Hippo pathway in hyperthyroid rats. In conclusion, the results herein suggested that SO2 inhibited the overactivation of the Hippo pathway, antagonized ERS and apoptosis, and alleviated myocardial fibrosis in hyperthyroid rats. Therefore, this study was expected to identify intervention targets and new strategies for prevention and treatment of HTC.
期刊介绍:
The Korean Journal of Physiology & Pharmacology (Korean J. Physiol. Pharmacol., KJPP) is the official journal of both the Korean Physiological Society (KPS) and the Korean Society of Pharmacology (KSP). The journal launched in 1997 and is published bi-monthly in English. KJPP publishes original, peer-reviewed, scientific research-based articles that report successful advances in physiology and pharmacology. KJPP welcomes the submission of all original research articles in the field of physiology and pharmacology, especially the new and innovative findings. The scope of researches includes the action mechanism, pharmacological effect, utilization, and interaction of chemicals with biological system as well as the development of new drug targets. Theoretical articles that use computational models for further understanding of the physiological or pharmacological processes are also welcomed. Investigative translational research articles on human disease with an emphasis on physiology or pharmacology are also invited. KJPP does not publish work on the actions of crude biological extracts of either unknown chemical composition (e.g. unpurified and unvalidated) or unknown concentration. Reviews are normally commissioned, but consideration will be given to unsolicited contributions. All papers accepted for publication in KJPP will appear simultaneously in the printed Journal and online.