{"title":"细看矩阵最小奇异值的一些新下限","authors":"Avleen Kaur , S.H. Lui","doi":"10.1016/j.exco.2024.100142","DOIUrl":null,"url":null,"abstract":"<div><p>There is an extensive body of literature on estimating the eigenvalues of the sum of two symmetric matrices, <span><math><mrow><mi>P</mi><mo>+</mo><mi>Q</mi></mrow></math></span>, in relation to the eigenvalues of <span><math><mi>P</mi></math></span> and <span><math><mi>Q</mi></math></span>. Recently, the authors introduced two novel lower bounds on the minimum eigenvalue, <span><math><mrow><msub><mrow><mi>λ</mi></mrow><mrow><mo>min</mo></mrow></msub><mrow><mo>(</mo><mi>P</mi><mo>+</mo><mi>Q</mi><mo>)</mo></mrow></mrow></math></span>, under the conditions that matrices <span><math><mi>P</mi></math></span> and <span><math><mi>Q</mi></math></span> are symmetric positive semi-definite and their sum <span><math><mrow><mi>P</mi><mo>+</mo><mi>Q</mi></mrow></math></span> is non-singular. These bounds rely on the Friedrichs angle between the range spaces of matrices <span><math><mi>P</mi></math></span> and <span><math><mi>Q</mi></math></span>, which are denoted by <span><math><mrow><mi>R</mi><mrow><mo>(</mo><mi>P</mi><mo>)</mo></mrow></mrow></math></span> and <span><math><mrow><mi>R</mi><mrow><mo>(</mo><mi>Q</mi><mo>)</mo></mrow></mrow></math></span>, respectively. In addition, both results led to the derivation of several new lower bounds on the minimum singular value of full-rank matrices. One significant aspect of the two novel lower bounds on <span><math><mrow><msub><mrow><mi>λ</mi></mrow><mrow><mo>min</mo></mrow></msub><mrow><mo>(</mo><mi>P</mi><mo>+</mo><mi>Q</mi><mo>)</mo></mrow></mrow></math></span> is the distinction of the case where <span><math><mrow><mi>R</mi><mrow><mo>(</mo><mi>P</mi><mo>)</mo></mrow></mrow></math></span> and <span><math><mrow><mi>R</mi><mrow><mo>(</mo><mi>Q</mi><mo>)</mo></mrow></mrow></math></span> have no principal angles between 0 and <span><math><mfrac><mrow><mi>π</mi></mrow><mrow><mn>2</mn></mrow></mfrac></math></span>. This work offers an explanation for the aforementioned scenario and presents a classification of all matrices that meet the specified criteria. Additionally, we offer insight into the rationale behind selecting the decomposition for the subspace <span><math><mrow><mi>R</mi><mrow><mo>(</mo><mi>Q</mi><mo>)</mo></mrow></mrow></math></span>, which is employed to formulate the lower bounds for <span><math><mrow><msub><mrow><mi>λ</mi></mrow><mrow><mo>min</mo></mrow></msub><mrow><mo>(</mo><mi>P</mi><mo>+</mo><mi>Q</mi><mo>)</mo></mrow></mrow></math></span>. At last, an example that showcases the potential for improving these two lower bounds is presented.</p></div>","PeriodicalId":100517,"journal":{"name":"Examples and Counterexamples","volume":"5 ","pages":"Article 100142"},"PeriodicalIF":0.0000,"publicationDate":"2024-02-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2666657X24000089/pdfft?md5=0c2ae22f7c329a636b6ee13795d2840d&pid=1-s2.0-S2666657X24000089-main.pdf","citationCount":"0","resultStr":"{\"title\":\"A closer look at some new lower bounds on the minimum singular value of a matrix\",\"authors\":\"Avleen Kaur , S.H. Lui\",\"doi\":\"10.1016/j.exco.2024.100142\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>There is an extensive body of literature on estimating the eigenvalues of the sum of two symmetric matrices, <span><math><mrow><mi>P</mi><mo>+</mo><mi>Q</mi></mrow></math></span>, in relation to the eigenvalues of <span><math><mi>P</mi></math></span> and <span><math><mi>Q</mi></math></span>. Recently, the authors introduced two novel lower bounds on the minimum eigenvalue, <span><math><mrow><msub><mrow><mi>λ</mi></mrow><mrow><mo>min</mo></mrow></msub><mrow><mo>(</mo><mi>P</mi><mo>+</mo><mi>Q</mi><mo>)</mo></mrow></mrow></math></span>, under the conditions that matrices <span><math><mi>P</mi></math></span> and <span><math><mi>Q</mi></math></span> are symmetric positive semi-definite and their sum <span><math><mrow><mi>P</mi><mo>+</mo><mi>Q</mi></mrow></math></span> is non-singular. These bounds rely on the Friedrichs angle between the range spaces of matrices <span><math><mi>P</mi></math></span> and <span><math><mi>Q</mi></math></span>, which are denoted by <span><math><mrow><mi>R</mi><mrow><mo>(</mo><mi>P</mi><mo>)</mo></mrow></mrow></math></span> and <span><math><mrow><mi>R</mi><mrow><mo>(</mo><mi>Q</mi><mo>)</mo></mrow></mrow></math></span>, respectively. In addition, both results led to the derivation of several new lower bounds on the minimum singular value of full-rank matrices. One significant aspect of the two novel lower bounds on <span><math><mrow><msub><mrow><mi>λ</mi></mrow><mrow><mo>min</mo></mrow></msub><mrow><mo>(</mo><mi>P</mi><mo>+</mo><mi>Q</mi><mo>)</mo></mrow></mrow></math></span> is the distinction of the case where <span><math><mrow><mi>R</mi><mrow><mo>(</mo><mi>P</mi><mo>)</mo></mrow></mrow></math></span> and <span><math><mrow><mi>R</mi><mrow><mo>(</mo><mi>Q</mi><mo>)</mo></mrow></mrow></math></span> have no principal angles between 0 and <span><math><mfrac><mrow><mi>π</mi></mrow><mrow><mn>2</mn></mrow></mfrac></math></span>. This work offers an explanation for the aforementioned scenario and presents a classification of all matrices that meet the specified criteria. Additionally, we offer insight into the rationale behind selecting the decomposition for the subspace <span><math><mrow><mi>R</mi><mrow><mo>(</mo><mi>Q</mi><mo>)</mo></mrow></mrow></math></span>, which is employed to formulate the lower bounds for <span><math><mrow><msub><mrow><mi>λ</mi></mrow><mrow><mo>min</mo></mrow></msub><mrow><mo>(</mo><mi>P</mi><mo>+</mo><mi>Q</mi><mo>)</mo></mrow></mrow></math></span>. At last, an example that showcases the potential for improving these two lower bounds is presented.</p></div>\",\"PeriodicalId\":100517,\"journal\":{\"name\":\"Examples and Counterexamples\",\"volume\":\"5 \",\"pages\":\"Article 100142\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-02-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S2666657X24000089/pdfft?md5=0c2ae22f7c329a636b6ee13795d2840d&pid=1-s2.0-S2666657X24000089-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Examples and Counterexamples\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2666657X24000089\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Examples and Counterexamples","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666657X24000089","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A closer look at some new lower bounds on the minimum singular value of a matrix
There is an extensive body of literature on estimating the eigenvalues of the sum of two symmetric matrices, , in relation to the eigenvalues of and . Recently, the authors introduced two novel lower bounds on the minimum eigenvalue, , under the conditions that matrices and are symmetric positive semi-definite and their sum is non-singular. These bounds rely on the Friedrichs angle between the range spaces of matrices and , which are denoted by and , respectively. In addition, both results led to the derivation of several new lower bounds on the minimum singular value of full-rank matrices. One significant aspect of the two novel lower bounds on is the distinction of the case where and have no principal angles between 0 and . This work offers an explanation for the aforementioned scenario and presents a classification of all matrices that meet the specified criteria. Additionally, we offer insight into the rationale behind selecting the decomposition for the subspace , which is employed to formulate the lower bounds for . At last, an example that showcases the potential for improving these two lower bounds is presented.