评估复杂 CICC 结构传热特性的新型数值方法

IF 1.3 3区 物理与天体物理 Q4 PHYSICS, APPLIED Physica C-superconductivity and Its Applications Pub Date : 2024-02-28 DOI:10.1016/j.physc.2023.1354435
Fengyang Han , Zhifan Liu , Zhifeng Liu , Qiyong Zhang , Xiaohong Wang , Min Wang
{"title":"评估复杂 CICC 结构传热特性的新型数值方法","authors":"Fengyang Han ,&nbsp;Zhifan Liu ,&nbsp;Zhifeng Liu ,&nbsp;Qiyong Zhang ,&nbsp;Xiaohong Wang ,&nbsp;Min Wang","doi":"10.1016/j.physc.2023.1354435","DOIUrl":null,"url":null,"abstract":"<div><p>In this article, we propose a numerical model for calculating the external heat transfer coefficient between the bundle region and its wall for cables in conduit conductor (CICC). With the assumption of local thermal equilibrium, one macro equation describing the steady heat transfer on the cross section of the CICC can be obtained. A key parameter, the effective transverse thermal conductivity <span><math><msub><mi>k</mi><mtext>eff</mtext></msub></math></span>, which takes the contribution of both strands and flowing fluid into consideration, is introduced. To calculate the effective transverse thermal conductivity <span><math><msub><mi>k</mi><mtext>eff</mtext></msub></math></span>, we first obtain the true distribution of different phases (fluid, copper and superconducting material) on a cross section of CICC with the help of the image recognition technique. Based on this, the value of the effective transverse thermal conductivity <span><math><msub><mi>k</mi><mtext>eff</mtext></msub></math></span> can be calculated numerically. Due to the large difference among the component thermal conductivities (at 4.5 K, typical values of the thermal conductivity of liquid helium, superconducting material and copper are <span><math><mrow><msub><mi>k</mi><mtext>He</mtext></msub><mo>=</mo><mn>0.024</mn><mrow><mspace></mspace><mi>W</mi><mspace></mspace></mrow><msup><mrow><mi>m</mi></mrow><mrow><mo>−</mo><mn>1</mn></mrow></msup><mspace></mspace><msup><mrow><mi>K</mi></mrow><mrow><mo>−</mo><mn>1</mn></mrow></msup></mrow></math></span>, <span><math><mrow><msub><mi>k</mi><mrow><mi>N</mi><msub><mi>b</mi><mn>3</mn></msub><mtext>Sn</mtext></mrow></msub><mo>=</mo><mn>0.04</mn><mrow><mspace></mspace><mi>W</mi><mspace></mspace></mrow><msup><mrow><mi>m</mi></mrow><mrow><mo>−</mo><mn>1</mn></mrow></msup><mspace></mspace><msup><mrow><mi>K</mi></mrow><mrow><mo>−</mo><mn>1</mn></mrow></msup></mrow></math></span> and <span><math><mrow><msub><mi>k</mi><mtext>Cu</mtext></msub><mo>=</mo><mn>708</mn><mrow><mspace></mspace><mi>W</mi><mspace></mspace></mrow><msup><mrow><mi>m</mi></mrow><mrow><mo>−</mo><mn>1</mn></mrow></msup><mspace></mspace><msup><mrow><mi>K</mi></mrow><mrow><mo>−</mo><mn>1</mn></mrow></msup></mrow></math></span>; and the maximal ratio of thermal conductivity can be as high as about 30,000), the high-performance finite analytical method (FAM) is recommended to calculate <span><math><msub><mi>k</mi><mtext>eff</mtext></msub></math></span>. After obtaining the effective transverse thermal conductivity <span><math><msub><mi>k</mi><mtext>eff</mtext></msub></math></span> of the bundle region, the heat transfer coefficient can be calculated directly by solving a simple Poisson equation under proper boundary conditions. Two case studies are performed, including the JT-60 Super Advanced (JT-60SA) CICC and the dual channel International Thermonuclear Experimental Reactor, Toroidal Field Performance Sample (ITER-TFPS). The calculated values of heat transfer coefficient are consistent with the experimental results, which verifies our proposed model.</p></div>","PeriodicalId":20159,"journal":{"name":"Physica C-superconductivity and Its Applications","volume":null,"pages":null},"PeriodicalIF":1.3000,"publicationDate":"2024-02-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A novel numerical method to evaluate the heat transfer characteristics of complicated CICC structures\",\"authors\":\"Fengyang Han ,&nbsp;Zhifan Liu ,&nbsp;Zhifeng Liu ,&nbsp;Qiyong Zhang ,&nbsp;Xiaohong Wang ,&nbsp;Min Wang\",\"doi\":\"10.1016/j.physc.2023.1354435\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In this article, we propose a numerical model for calculating the external heat transfer coefficient between the bundle region and its wall for cables in conduit conductor (CICC). With the assumption of local thermal equilibrium, one macro equation describing the steady heat transfer on the cross section of the CICC can be obtained. A key parameter, the effective transverse thermal conductivity <span><math><msub><mi>k</mi><mtext>eff</mtext></msub></math></span>, which takes the contribution of both strands and flowing fluid into consideration, is introduced. To calculate the effective transverse thermal conductivity <span><math><msub><mi>k</mi><mtext>eff</mtext></msub></math></span>, we first obtain the true distribution of different phases (fluid, copper and superconducting material) on a cross section of CICC with the help of the image recognition technique. Based on this, the value of the effective transverse thermal conductivity <span><math><msub><mi>k</mi><mtext>eff</mtext></msub></math></span> can be calculated numerically. Due to the large difference among the component thermal conductivities (at 4.5 K, typical values of the thermal conductivity of liquid helium, superconducting material and copper are <span><math><mrow><msub><mi>k</mi><mtext>He</mtext></msub><mo>=</mo><mn>0.024</mn><mrow><mspace></mspace><mi>W</mi><mspace></mspace></mrow><msup><mrow><mi>m</mi></mrow><mrow><mo>−</mo><mn>1</mn></mrow></msup><mspace></mspace><msup><mrow><mi>K</mi></mrow><mrow><mo>−</mo><mn>1</mn></mrow></msup></mrow></math></span>, <span><math><mrow><msub><mi>k</mi><mrow><mi>N</mi><msub><mi>b</mi><mn>3</mn></msub><mtext>Sn</mtext></mrow></msub><mo>=</mo><mn>0.04</mn><mrow><mspace></mspace><mi>W</mi><mspace></mspace></mrow><msup><mrow><mi>m</mi></mrow><mrow><mo>−</mo><mn>1</mn></mrow></msup><mspace></mspace><msup><mrow><mi>K</mi></mrow><mrow><mo>−</mo><mn>1</mn></mrow></msup></mrow></math></span> and <span><math><mrow><msub><mi>k</mi><mtext>Cu</mtext></msub><mo>=</mo><mn>708</mn><mrow><mspace></mspace><mi>W</mi><mspace></mspace></mrow><msup><mrow><mi>m</mi></mrow><mrow><mo>−</mo><mn>1</mn></mrow></msup><mspace></mspace><msup><mrow><mi>K</mi></mrow><mrow><mo>−</mo><mn>1</mn></mrow></msup></mrow></math></span>; and the maximal ratio of thermal conductivity can be as high as about 30,000), the high-performance finite analytical method (FAM) is recommended to calculate <span><math><msub><mi>k</mi><mtext>eff</mtext></msub></math></span>. After obtaining the effective transverse thermal conductivity <span><math><msub><mi>k</mi><mtext>eff</mtext></msub></math></span> of the bundle region, the heat transfer coefficient can be calculated directly by solving a simple Poisson equation under proper boundary conditions. Two case studies are performed, including the JT-60 Super Advanced (JT-60SA) CICC and the dual channel International Thermonuclear Experimental Reactor, Toroidal Field Performance Sample (ITER-TFPS). The calculated values of heat transfer coefficient are consistent with the experimental results, which verifies our proposed model.</p></div>\",\"PeriodicalId\":20159,\"journal\":{\"name\":\"Physica C-superconductivity and Its Applications\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2024-02-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Physica C-superconductivity and Its Applications\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0921453423002265\",\"RegionNum\":3,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"PHYSICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physica C-superconductivity and Its Applications","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0921453423002265","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"PHYSICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

本文提出了一种用于计算导管内电缆(CICC)束区与其壁之间外部传热系数的数值模型。在局部热平衡的假设下,可以得到一个描述 CICC 截面上稳定传热的宏观方程。其中引入了一个关键参数,即有效横向导热系数 keff,它考虑了钢绞线和流动液体的贡献。为了计算有效横向导热系数 keff,我们首先利用图像识别技术获得了不同相(流体、铜和超导材料)在 CICC 横截面上的真实分布。在此基础上,可以数值计算出有效横向热导率 keff 的值。由于各成分的热导率差异较大(在 4.5 K 时,液氦、超导材料和铜的热导率典型值分别为 kHe=0.024Wm-1K-1、kNb3Sn=0.04Wm-1K-1 和 kCu=708Wm-1K-1;热导率的最大比值可高达约 30,000 ),因此建议采用高性能有限分析方法(FAM)来计算 keff。在获得管束区域的有效横向导热系数 keff 后,可在适当的边界条件下通过求解简单的泊松方程直接计算传热系数。本文进行了两个案例研究,包括 JT-60 超先进(JT-60SA)CICC 和双通道国际热核实验反应堆环形场性能样品(ITER-TFPS)。热传导系数的计算值与实验结果一致,验证了我们提出的模型。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A novel numerical method to evaluate the heat transfer characteristics of complicated CICC structures

In this article, we propose a numerical model for calculating the external heat transfer coefficient between the bundle region and its wall for cables in conduit conductor (CICC). With the assumption of local thermal equilibrium, one macro equation describing the steady heat transfer on the cross section of the CICC can be obtained. A key parameter, the effective transverse thermal conductivity keff, which takes the contribution of both strands and flowing fluid into consideration, is introduced. To calculate the effective transverse thermal conductivity keff, we first obtain the true distribution of different phases (fluid, copper and superconducting material) on a cross section of CICC with the help of the image recognition technique. Based on this, the value of the effective transverse thermal conductivity keff can be calculated numerically. Due to the large difference among the component thermal conductivities (at 4.5 K, typical values of the thermal conductivity of liquid helium, superconducting material and copper are kHe=0.024Wm1K1, kNb3Sn=0.04Wm1K1 and kCu=708Wm1K1; and the maximal ratio of thermal conductivity can be as high as about 30,000), the high-performance finite analytical method (FAM) is recommended to calculate keff. After obtaining the effective transverse thermal conductivity keff of the bundle region, the heat transfer coefficient can be calculated directly by solving a simple Poisson equation under proper boundary conditions. Two case studies are performed, including the JT-60 Super Advanced (JT-60SA) CICC and the dual channel International Thermonuclear Experimental Reactor, Toroidal Field Performance Sample (ITER-TFPS). The calculated values of heat transfer coefficient are consistent with the experimental results, which verifies our proposed model.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.70
自引率
11.80%
发文量
102
审稿时长
66 days
期刊介绍: Physica C (Superconductivity and its Applications) publishes peer-reviewed papers on novel developments in the field of superconductivity. Topics include discovery of new superconducting materials and elucidation of their mechanisms, physics of vortex matter, enhancement of critical properties of superconductors, identification of novel properties and processing methods that improve their performance and promote new routes to applications of superconductivity. The main goal of the journal is to publish: 1. Papers that substantially increase the understanding of the fundamental aspects and mechanisms of superconductivity and vortex matter through theoretical and experimental methods. 2. Papers that report on novel physical properties and processing of materials that substantially enhance their critical performance. 3. Papers that promote new or improved routes to applications of superconductivity and/or superconducting materials, and proof-of-concept novel proto-type superconducting devices. The editors of the journal will select papers that are well written and based on thorough research that provide truly novel insights.
期刊最新文献
Zhang-Rice singlets dominate critical temperature evolution of cuprate superconductivity Performance evaluation of superconductor integrated circuit simulators Optimization of high temperature superconducting motor magnets with strong airgap flux density Temperature-dependent properties of basic elements of all-NbN RSFQ circuits Electron, phonon, and superconducting properties of Mg2CuH6 under pressure
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1