易腐产品的多车厢电动车路线问题

Q2 Decision Sciences International Journal of Crowd Science Pub Date : 2024-02-27 DOI:10.26599/IJCS.2023.9100017
Zhishuo Liu;Yuqing Li;Junzhe Xu;Donglu Bai
{"title":"易腐产品的多车厢电动车路线问题","authors":"Zhishuo Liu;Yuqing Li;Junzhe Xu;Donglu Bai","doi":"10.26599/IJCS.2023.9100017","DOIUrl":null,"url":null,"abstract":"The study first proposes a heterogeneous fleet, multi-compartment electric vehicle routing problem for perishable products (MCEVRP-PP). We capture a lot of practical demands and constraints of the MCEVRP-PP, such as multiple temperature zones, the hard time window, charging more than once during delivery, various power consumption per unit of refrigeration, etc. We model the MCEVRP-PP as a mixed integer program and aim to optimize the total cost including vehicle fixed cost, power cost, and cooling cost. A hybrid ant colony optimization (HACO) is developed to solve the problem. In the transfer rule, the time window is introduced to improve flexibility in route construction. According to the features of multi-compartment electric vehicles, the capacity constraint judgment algorithm is developed in route construction. Six local search strategies are designed with time windows, recharging stations, etc. Experiments based on various instances validate that HACO solves MCEVRP-PP more effectively than the ant colony optimization (ACO). Compared with fuel vehicles and single-compartment vehicles, electric vehicles and multi-compartment electric vehicles can save the total cost and mileage, and increase utilization of vehicles.","PeriodicalId":32381,"journal":{"name":"International Journal of Crowd Science","volume":"8 1","pages":"38-48"},"PeriodicalIF":0.0000,"publicationDate":"2024-02-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10445695","citationCount":"0","resultStr":"{\"title\":\"Multi-Compartment Electric Vehicle Routing Problem for Perishable Products\",\"authors\":\"Zhishuo Liu;Yuqing Li;Junzhe Xu;Donglu Bai\",\"doi\":\"10.26599/IJCS.2023.9100017\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The study first proposes a heterogeneous fleet, multi-compartment electric vehicle routing problem for perishable products (MCEVRP-PP). We capture a lot of practical demands and constraints of the MCEVRP-PP, such as multiple temperature zones, the hard time window, charging more than once during delivery, various power consumption per unit of refrigeration, etc. We model the MCEVRP-PP as a mixed integer program and aim to optimize the total cost including vehicle fixed cost, power cost, and cooling cost. A hybrid ant colony optimization (HACO) is developed to solve the problem. In the transfer rule, the time window is introduced to improve flexibility in route construction. According to the features of multi-compartment electric vehicles, the capacity constraint judgment algorithm is developed in route construction. Six local search strategies are designed with time windows, recharging stations, etc. Experiments based on various instances validate that HACO solves MCEVRP-PP more effectively than the ant colony optimization (ACO). Compared with fuel vehicles and single-compartment vehicles, electric vehicles and multi-compartment electric vehicles can save the total cost and mileage, and increase utilization of vehicles.\",\"PeriodicalId\":32381,\"journal\":{\"name\":\"International Journal of Crowd Science\",\"volume\":\"8 1\",\"pages\":\"38-48\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-02-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10445695\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Crowd Science\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10445695/\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"Decision Sciences\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Crowd Science","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10445695/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Decision Sciences","Score":null,"Total":0}
引用次数: 0

摘要

本研究首先提出了易腐产品的异构车队、多车厢电动汽车路由问题(MCEVRP-PP)。我们捕捉到了 MCEVRP-PP 的大量实际需求和约束条件,如多个温度区、硬时间窗、运送过程中的多次充电、单位制冷量的各种功耗等。我们将 MCEVRP-PP 建模为混合整数程序,旨在优化包括车辆固定成本、电力成本和制冷成本在内的总成本。为解决该问题,我们开发了一种混合蚁群优化(HACO)方法。在转移规则中,引入了时间窗口以提高路线建设的灵活性。根据多车厢电动汽车的特点,在路线构建中开发了容量约束判断算法。设计了时间窗、充电站等六种局部搜索策略。基于各种实例的实验验证了 HACO 比蚁群优化(ACO)更有效地解决了 MCEVRP-PP。与燃油车和单厢车相比,电动车和多厢电动车可以节约总成本和行驶里程,提高车辆利用率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Multi-Compartment Electric Vehicle Routing Problem for Perishable Products
The study first proposes a heterogeneous fleet, multi-compartment electric vehicle routing problem for perishable products (MCEVRP-PP). We capture a lot of practical demands and constraints of the MCEVRP-PP, such as multiple temperature zones, the hard time window, charging more than once during delivery, various power consumption per unit of refrigeration, etc. We model the MCEVRP-PP as a mixed integer program and aim to optimize the total cost including vehicle fixed cost, power cost, and cooling cost. A hybrid ant colony optimization (HACO) is developed to solve the problem. In the transfer rule, the time window is introduced to improve flexibility in route construction. According to the features of multi-compartment electric vehicles, the capacity constraint judgment algorithm is developed in route construction. Six local search strategies are designed with time windows, recharging stations, etc. Experiments based on various instances validate that HACO solves MCEVRP-PP more effectively than the ant colony optimization (ACO). Compared with fuel vehicles and single-compartment vehicles, electric vehicles and multi-compartment electric vehicles can save the total cost and mileage, and increase utilization of vehicles.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
International Journal of Crowd Science
International Journal of Crowd Science Decision Sciences-Decision Sciences (miscellaneous)
CiteScore
2.70
自引率
0.00%
发文量
20
审稿时长
24 weeks
期刊最新文献
Contents Front Cover Improving Energy Harvesting System from Ambient RF Sources in Social Systems with Overcrowding Editorial of Cyber-Physical Social Systems and Smart Environments CGLS Method for Efficient Equalization of OFDM Systems Under Doubly Dispersive Fading Channels with an Application Into 6G Communications in Smart Overcrowded
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1